
Distributed Control of Multihop Wireless Networks with

Quality-of-Service

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Ashok Krishnan K. S.

Electrical Communication Engineering

Indian Institute of Science

Bangalore – 560 012 (INDIA)

FEBRUARY 2020

c© Ashok Krishnan K. S.

February 2020

All rights reserved

Signature of the Author: .

Ashok Krishnan K. S.

Dept. of Electrical Communication Engineering

Indian Institute of Science, Bangalore

Signature of the Thesis Supervisor: .

Vinod Sharma

Professor

Dept. of Electrical Communication Engineering

Indian Institute of Science, Bangalore

Acknowledgements

I would like to thank all those who made this work possible.

Firstly, I would like to thank my advisor, Prof. Vinod Sharma, who has been a major

influence. His immense mathematical knowledge has furthered my understanding greatly. His

words have continuously inspired me to explore newer territories in learning. I thank him for

his support and intellectual input.

Secondly, I thank my labmates, for making life interesting. Deekshith, Santanu, Sahas-

ranand, Jithin, Karthik, Sudheer, Gautam, Uday, Satya, KC, Shahid and all the others at PAL

Lab have gifted me a lifetime of experiences.

Thirdly, I thank all my other friends at IISc for making life fun. I owe a lot to their support

and encouragement. Thanks to Avishek for being there. And special thanks to my parents and

my sister for their love.

i

Abstract

We consider a multihop wireless network. There are multiple flows in the network, moving from

their respective sources to destinations, across multiple hops. These flows will have Quality-of-

service (QoS) requirements as well, depending on the applications which generated them.

In the first part of the thesis, we will provide a joint power allocation, scheduling and

routing policy, under the SINR model. This policy also has provisions for providing mean

delay and hard deadline QoS guarantees, using a system of dynamic weights. The algorithm

is implemented in a distributed manner using gossip algorithms. We show that the algorithm

stabilizes a fraction of the capacity region. We also compare the performance of the algorithm

with other existing algorithms by means of extensive simulations, and demonstrate its efficacy

in providing QoS on demand.

In the second part, we solve the scheduling and routing problem for a network with graphical

interference constraints. This model, although less general than the SINR model, is also widely

used. Using the notions of Draining Time and Discrete Review from the theory of fluid limits

of queues, an algorithm that meets end-to-end mean delay requirements of various flows in a

network is constructed. The algorithm involves an optimization which is implemented in a

cyclic distributed manner across nodes by using the technique of Iterative Gradient Descent,

with minimal information exchange between nodes. The algorithm uses time varying weights to

give priority to flows, and thus provids mean delay and hard deadline QoS. We also demonstrate

that a modified version of the algorithm is throughput optimal, using Lyapunov drift analysis.

In the third part, we obtain the diffusion approximation of the above system under heavy

traffic. This is done because the stationary distribution of the system is not tractable. We

show that the stationary distribution of the scaled process of the network converges to that of

the Brownian limit. Thus we obtain approximations for the mean queue length of the system

under stationarity. This theoretically justifies the performance of the system, and simulations

further verify our claims.

In the fourth part, we consider the problem of minimizing average age in a multihop wire-

less network. There are multiple source-destination pairs, transmitting data through multiple

ii

Abstract

wireless channels, over multiple hops. We propose a network control policy which consists of a

distributed scheduling algorithm, utilizing channel state information and queue lengths at each

link, in combination with a packet dropping rule. Dropping of older packets locally at queues

is seen to reduce the average age of flows, even below what can be achieved by Last Come

First Served (LCFS) scheduling. The proposed scheduling policy obtains average age values

close to a theoretical lower bound, and performs better than many existing algorithms in the

literature.

iii

Publications from the Thesis

1. Ashok Krishnan K. S. and Vinod Sharma. “A distributed algorithm for quality-of-service

provisioning in multihop networks,” in the proceedings of the Twenty-third National

Conference on Communications (NCC), IIT Madras, Chennai, India, March 2-4, 2017.

2. Ashok Krishnan K. S. and Vinod Sharma. “A distributed scheduling algorithm to provide

quality-of-service in multihop wireless networks,” in the proceedings of the IEEE Global

Communications Conference(GLOBECOM) 2017, Singapore, December 4-8, 2017.

3. Ashok Krishnan K. S. and Vinod Sharma. “Distributed Control and Quality-of-Service in

Multihop Wireless Networks,” in the proceedings of the IEEE International Conference

on Communications (ICC) 2018, Kansas city, MO, USA, May 20-24, 2018.

4. Ashok Krishnan K. S. and Vinod Sharma. “Providing Quality-of-Service in Multihop

Wireless Networks: Diffusion Approximation”, in the proceedings of the International

Conference on Advances in Applied Probability and Stochastic Processes (ICAAP&SP),

CMS College, Kottayam, Kerala, India, 7-10 January 2019.

5. Ashok Krishnan K. S. and Vinod Sharma.“Minimizing Age of Information in a Multi-

hop Wireless Network”, accepted for presentation at IEEE International Conference on

Communications (ICC) 2020 .

6. Ashok Krishnan K. S. and Vinod Sharma. “Quality-of-Service in Multihop Wireless Net-

works: Diffusion Approximation”, submitted to IEEE Transactions on Wireless Commu-

nications.

iv

Contents

Acknowledgements i

Abstract ii

Publications from the Thesis iv

Contents v

List of Figures ix

List of Tables xi

List of Symbols xiv

List of Notation xv

1 Introduction 1

1.1 Related Work . 2

1.2 System Model . 7

1.3 Contributions and Organization . 9

2 Joint Power Allocation, Routing and Scheduling under the SINR model 11

2.1 System Model . 11

2.2 Capacity Region . 13

2.3 A Distributed Scheme Providing QoS . 14

2.3.1 Gossip Algorithm . 16

2.4 Performance Analysis . 19

2.5 Simulation Results . 22

2.6 Conclusion . 25

v

CONTENTS

2.A Proof of Lemma 2.1 . 27

2.B Proof of Lemma 2.2 . 29

2.C Proof of Lemma 2.3 . 33

3 A Distributed Draining Time Based Scheduling Algorithm with Graphical

Interference Constraints 35

3.1 System Model . 35

3.2 Discrete Review . 37

3.2.1 An Optimization based on Draining Time 37

3.2.2 Optimization at Review Times . 39

3.2.3 Providing Quality-of-Service . 40

3.3 Distributed Optimization . 40

3.3.1 Incremental Gradient Ascent . 41

3.3.2 Projection . 41

3.3.3 Convergence . 44

3.3.4 Algorithm Description . 44

3.4 Simulation Results . 47

3.5 Throughput Optimal Algorithm . 50

3.5.1 An Alternate Representation . 51

3.6 Capacity Region and Rate Region . 52

3.7 Fluid Limit . 53

3.8 Simulation Results . 64

3.9 Conclusion . 65

4 Diffusion Approximation and Convergence of Stationary Distributions 67

4.1 System Model . 67

4.2 Fluid Limit and Stability . 70

4.2.1 Draining Time . 72

4.3 Diffusion Scaling and Heavy Traffic Limit . 73

4.3.1 Convergence of ûn . 77

4.3.2 Convergence of v̂n . 79

4.4 Convergence of Stationary Distributions . 81

4.5 Numerical Simulations . 88

4.6 Conclusion . 91

4.A Proof of Lemma 4.6 . 92

vi

CONTENTS

4.B Proof of Lemma 4.7 . 95

4.C Proof of Theorem 4.2 . 97

4.9.1 Proof of the properties of v̂ . 101

4.D Proof of (4.74) . 103

4.E Proof of (4.79) . 105

5 Minimizing Age in a Multihop Wireless Network 106

5.1 Age of Information . 107

5.2 System Model and Problem Formulation . 108

5.2.1 Control Policy . 109

5.2.1.1 Service Discipline . 110

5.2.1.2 Optimization Rule . 110

5.2.2 Distributed Implementation . 111

5.3 Simulation Results and Discussion . 112

5.3.1 An Approximate Lower Bound for Age 113

5.3.2 Example Network 1 . 113

5.3.3 Example Network 2 . 116

5.3.4 Discussion . 117

5.4 Conclusion . 118

6 Conclusions and Future Directions 119

6.1 Future Directions . 120

Bibliography 122

vii

CONTENTS

viii

List of Figures

1.1 A simplified depiction of a multihop wireless network. Flow f starts from node

i, and hence has src(f) = i. 8

2.1 A simplified depiction of a Wireless Network . 12

2.2 Stability Region for our algorithm for a network with 20 nodes and 5 flows . . . 23

2.3 Stability Region for our algorithm for a network with 20 nodes and 15 flows . . 23

3.1 A simplified depiction of a Wireless Multihop Network 36

3.2 Review Times . 37

3.3 Draining Time . 38

3.4 Single Step Projection . 42

3.5 Multi Step Projection . 42

3.6 Sample Network . 48

3.7 Number of Iterations versus Mean Delay . 48

3.8 Sample Network . 65

4.1 A simplified depiction of a Wireless Multihop Network. The flow 17 corresponds

to the source 1 and destination 7. 68

4.2 Example 1: The Network . 89

4.3 Example 2: The Network . 90

5.1 Evolution of Age. The red and blue lines show the evolution of the age of

information at the destination and source respectively, as a function of time. At

times t1 and t2, the first and second packets are generated at the source. These

are received at the destination at times t̂1 and t̂2. 107

5.2 A simplified depiction of a Wireless Multihop Network. The flow f follows the

path i→ m→ j → l. 108

5.3 Example network 1. 113

ix

LIST OF FIGURES

5.4 Example network 2. 116

x

List of Tables

2.1 One flow with mean delay requirement . 25

2.2 Two flows with mean delay requirement . 25

2.3 Two flows with mean delay requirement . 26

2.4 Two mean Delays and one hard deadline . 26

3.1 Two Flows with mean delay requirement . 50

3.2 One mean delay and one hard deadline . 50

3.3 Simulation for example in Fig 3.8. Three Flows with mean delay requirements,

network of fifteen nodes. Entries of the form (a,b) indicate delay target a, delay

achieved b. 65

4.1 Approximation of Queues. The mean queue length of the flow 1 → 3 → 5

corresponding to various arrival rates is displayed, along with the numerical

approximation. 89

4.2 Mean Queue Length Target and Obtained, for both flows. 90

4.3 Entries of the form (a,b) indicate delay target a, delay achieved b. 91

4.4 Entries of the form (a,b) indicate delay target a, delay achieved b. Arrival rate

is (0.55.0.55, 0.01). 91

5.1 Average AoI for different flows under different policies, for the network in figure

5.3, with arrival rates of all flows fixed at 0.1. 114

5.2 Average AoI for different flows under different policies, for the network in figure

5.3, with arrival rates of all flows fixed at 0.13. 115

5.3 Average AoI for different flows under different policies, for the network in figure

5.3, with arrival rates of all flows fixed at 0.14. 115

xi

LIST OF TABLES

5.4 Average AoI for different flows under the SDSPD policy, for the network in figure

5.3, with arrival rates of all flows fixed at 0.14. First column gives the target age

for each flow. A ∗ indicates that the target is set to ∞ (i.e., no target). 116

5.5 Average AoI for different flows under different policies, for the network in figure

5.4, with arrival rates of all flows fixed at 0.1. 117

5.6 Average AoI for different flows under different policies, for the network in figure

5.4, with arrival rates of all flows fixed at 0.13. 117

xii

LIST OF TABLES

xiii

List of Symbols

∃ there exists
a.s. almost surely
a ∧ b min(a, b)
a ∨ b max(a, b)
a+ max(a, 0)
|x| modulus of x, if x is a real number; if x is a vector, its norm
A ∩B intersection of sets A and B
A ∪B union of sets A and B
A convex hull of set A
A+ for a set A ⊂ R, equals A ∩ R+

Ac complement of a set A
|A| cardinality of a set A
P[A] probability of event A
E[X] expectation of random variable X
Ex[X(t)] E[X(t)|X(0) = x]
L→ convergence in distribution
L
= equality of distribution of two random variables
u approximately equal
f(x) is O(g(x)) there exists M such that for all x large enough, |f(x)| ≤Mg(x)
u.o.c. uniformly on compact sets
∇f(x) gradient of function f at x
R set of all real numbers
R+ set of all non negative real numbers
Z set of all integers
Z+ set of all non negative integers

xiv

List of Notation

V Set of Nodes
E Set of Edges
H Set of Channel States
F Set of Flows
S Set of Schedules

Qf
i Queue Length of flow f at node i

Afi Cumulative Exogenous Arrivals to Qf
i

Df
i Cumulative Departures from Qf

i

Rf
i Cumulative Arrivals to Qf

i by routing

Sfij Cumulative number of packets of flow f served on link (i, j)
Hij Channel gain across link (i, j)

µfij(h, I) Rate to link (i, j) under channel state h, schedule I
Eh Cumulative slots when channel gain was h
GhI
ijf Time with channel h, schedule I, flow f scheduled on (i, j)

Λ Capacity region of the network

xv

Chapter 1

Introduction

Over the last few decades, with the growth of wireless connectivity and mobile systems, wireless

networks have become an important aspect of the communication landscape [77, 12, 74]. While

telephonic systems and the early internet were predominantly systems with wired connections,

the cellular revolution resulted in an accelerated growth of wireless connectivity. A number of

wireless communication technologies and standards exist, such as LTE, WiFi, WiMAX, Blue-

tooth, RuBee, Z-Wave and ZigBee. These cover a variety of purposes, ranging from long range

mobile communication to short range local area communication. Wireless networks support a

wide variety of applications including voice (VoIP), text (email), video (live streaming, peer-to-

peer), online gaming, cloud storage/data processing, home automation and remote healthcare.

We now live in a world where mobile communication is the norm. Consequently, networks of

devices connected over a wireless medium are of great practical interest. The control of such

networks, tailored to meet the requirements of different applications, is an active area of re-

search.

More recently, there has been a lot of interest in the Internet of Things (IoT) [4]. This en-

visages the coming together of different kinds of applications, using different physical methods

of communication and standards, talking to each other [5]. Each application will have its own

requirements. These will determine the Quality of Service (QoS) criteria for the packets corre-

sponding to that application. Some applications require an end-to-end mean delay guarantee

on the packets being transmitted. Some others, such as a live streaming video, may require all

packets to satisfy a hard delay requirement. In some cases, the QoS constraint is a bandwidth

requirement for the user. Services involving VoIP (Voice over IP) are sensitive to delay and

delay variability in the network, and require preferential treatment over other packets [63]. An-

other service that requires QoS is remote health-care, which involves collection of data about a

patient from a remote location and transmitting it elsewhere to be analysed [81]. Applications

1

that involve live monitoring may require a low Age of Information. It becomes important to de-

sign network control policies that can service different flows arising from different applications,

catering to heterogeneous requirements. Further, catering to different classes of customers, who

have different requirements, and who will pay the service provider differently, will require the

system to provide differential QoS.

The control of a wireless network consists of a number of aspects. Since a network will have

a number of devices communicating to each other over a shared wireless medium, a number

of questions arise. The primary question is how the devices share the network resources (time

and bandwidth) amongst each other. The devices may be running applications, which require

a certain level of communication performance. How to meet these performance requirements is

another question. These questions are dealt with by a network controller. The implementation

of the functionalities of the network controller is yet another design problem. In this thesis,

we discuss these three questions from a theoretical perspective. Thus, we are dealing with the

questions of scheduling, routing and power control in wireless networks. We want to formulate

network control policies that do the above, while satisfying QoS requirements of different flows.

In this work, we will consider the following forms of QoS: mean delay guarantees, hard deadline

guarantees and (average) age of information. Furthermore, we seek to implement these control

policies in a distributed manner, as well as study their performance theoretically.

While directly solving a QoS constrained network problem is not always feasible, owing

to complexity, one may come up with appropriate approximate solutions. These are obtained

using a variety of techniques. In some cases we replace the function being optimized with an

approximation. In some other cases we relax the constraints involved. Often, insights may

be obtained by studying the network behaviour in certain scaling regimes. The asymptotic

behaviour of the network in these regimes often have a direct bearing on the actual performance

of the network. In this thesis, we will be using some of these techniques to obtain useful insights

into the performance of network control policies.

1.1 Related Work

The stability of a wireless network was studied in [94], where the capacity region of a network

was defined as the set of all arrival rate vectors for which a stabilizing policy exists. The queue

weighted maxweight algorithm was shown to be throughput optimal, i.e., it stabilized all points

in the interior of the capacity region. In [71], a joint scheduling, routing and power control

policy was obtained for a multihop wireless network, and was shown to be throughput optimal.

This policy involves maximizing the sum of a rate-backpressure product over links. Further,

a distributed policy was also proposed, which was less complex to implement than the actual

2

algorithm (though it was not throughput optimal). While backpressure based algorithms offer

good performance in terms of stability, they may not yield good delay performance [83], espe-

cially under light loads [26]. In [21] the authors propose a distributed scheme that is guaranteed

to achieve at least one-third of the capacity region, by generating a maximal matching between

the nodes. This work assumes a graphical interference model. In [104], the authors show that

for a network with graphical interference constraints satisfying a condition known as local pool-

ing, distributed algorithms can achieve maximal throughput. A scheme which maximizes the

expected value of the rate-differential backlog metric was proposed in [53], under the SINR

interference model.

A randomized scheduling policy that converges to the throughput optimal policy was pro-

posed in [93]. This involves selecting a schedule randomly in every time slot, comparing with

the performance in the previos time, and picking the better schedule. Building on this idea, a

distributed network control scheme which stabilizes the network for a fraction of the capacity

region was given in [59], under the SINR interference model. This algorithm used gossip algo-

rithms [16, 30] to implement the optimization in every slot, in a decentralized manner. Gossip

refers to randomized local communication (message passing) between neighbouring nodes. By

means of such local exchanges, one can estimate global properties of the network, with proba-

bilistic guarantees. These guarantees will depend on the network topology as well. See [78] for

a comprehensive survey on gossip algorithms.

Another allocation rule which is known to be throughput optimal is the exponential rule, in

[82]. In this work, throughput optimality is demonstrated using the technique of fluid limits.

The use of fluid limit techniques to study networks goes back to works such as [76, 27, 87].

A fluid limit is a limit of the network process along a scaling regime, corresponding to the

Functional Strong Law of Large Numbers (FSLLN) [98]. The fluid limit is called stable if the

fluid queues reach the value zero in finite time. For many queueing models, stability of the fluid

limit implies stability of the underlying stochastic system [2, 22] (positive recurrence of the

underlying Markov Process). A generalized criterion for concluding the stability of a queueing

(Markov) process from its fluid model is provided in [32]. The converse, i.e., stability of the

stochastic model implying the stability of all associated fluid models is not true in general. In

[18], a queueing system is presented, the fluid limit of which is not stable. Surprisingly, the

underlying stochastic system is stable. In [66], it is shown that instability of the fluid model

implies the transience of the stochastic model. A notion of L2 stability of the fluid model is

shown to be equivalent to various stability notions of the original stochastic system, in [56].

In [10], the authors propose a linear programming method to test the stability of fluid models

in work conserving mutliclass queueing networks. Commonly, Lyapunov functions are used to

3

test the stability of fluid network models. In [102], it is shown that, for a generic fluid network,

the existence of a Lyapunov function is a necessary and sufficient condition for stability.

The fluid limit can also be used to obtain insights apart from stability. In [28], the au-

thors provide sufficient conditions for obtaining bounds on the steady state moments of queue

lengths in a multiclass queueing network. They also prove polynomial rates of convergence of

mean queue length to its steady state value. These results are obtained combining fluid limit

techniques and Markov chain theory [65]. Optimizing the fluid equivalent of a cost function

is studied in [64]. The notion of fluid scale asymptotic optimality (FSAO) is used, and it is

shown, that under certain conditions, the policy that is optimal with the given cost function,

will also satisfy FSAO. The technique of discrete review, inspired by BIGSTEP policies in

[39, 40], is used in [62]. Here, the network is viewed at certain review instants, and control

decisions are taken till the next review instant using information from the current state. They

also demonstrate FSAO.

In [23], an optimal infinite horizon fluid control policy is created by joining piecewise optimal

policies, each of which is optimal for a period of time. In [43] a throughput optimal, per-queue

based scheduling algorithm is presented. In [6], it is shown that the class of asymptotically

optimal policies contains the class of time average optimal policies, and that the value function

of the fluid model is a lower bound to the value function of the stochastic network. In [79], the

authors study networks under multiplicative state space collapse, using a fluid scale analysis

that does not assume complete resource pooling. A robust fluid model, obtained by adding

stochastic variability to the conventional fluid model, is discussed in [11]. Another algorithm

using per hop queue length information, with a low complexity approximation that stabilizes

a fraction of the capacity region is given in [60]. A draining time based scheduling and routing

algorithm to provide improved delay performance is given in [90]. The authors prove stability

under this policy for a two node relay network. A comprehensive overview of different control

techniques using fluid limits, and their analysis, is given in [65].

Another scaled approximation of networks is diffusion approximation. This is obtained by

scaling network processes in the regime corresponding to the Functional Central Limit Theorem

(FCLT) [13]. The networks are scaled while simultaneously increasing the traffic intensity to

the boundary of capacity. This is called the Heavy Traffic regime [98]. Early work in this

line includes [41] and [42]. A weak limit is obtained for a sequence of scaled processes. In

many common systems this limit turns out to be a Reflected Brownian Motion (RBM) [38].

This limiting process provides approximations for different statistics, such as mean delay and

queue length, of the queueing network. Sufficient conditions for the existence of a diffusion

limit for multiclass queueing networks is given in [99]. This assumes a work conserving service

4

policy, i.e., the queues are never idle when a customer is present. In [17], state space collapse is

demonstrated, for diffusion scaled queueing networks with First In First out (FIFO) and Head

of the Line processor sharing service disciplines. State space collapse is demonstrated for the

fluid model first. Then, viewing the diffusion scaled paths as scaled and restarted fluid sample

paths, the properties of the two are related.

In [88], the fluid limit of a maxweight scheduling policy, in a discrete time queueing network,

is obtained. Here, work conservation holds only asymptotically. They use techniques from [17]

to demonstrate state space collapse. The problem of routing arrivals to parallel resources is

studied in [95], in the heavy traffic regime. In [47], fluid and diffusion approximation models are

developed to study internet congestion control, operating under an α-fair bandwidth sharing

policy. Approximations for the queue length of networks in heavy traffic is given in [31]. A

recent concise survey of the use of diffusion approximation in queueing networks is provided in

[68].

The diffusion limit has a stationary distribution, which is easier to calculate than the sta-

tionary distribution of the actual system. This provides an approximation for various system

statistics of interest, such as mean queue length and delay. However, earlier papers on diffusion

approximation did not provide convergence of stationary distributions. The first paper to do

so seems to be [33] for general Jackson networks. They obtain convergence under the assump-

tion that the inter-arrival and service times have exponential moments. In [20], convergence

is shown under weaker assumptions. They use techniques refined from [28] to obtain sufficient

conditions for convergence of the distributions. These limit exchange arguments require the

Lipschitz continuity of an associated Skorohod map. The same problem, in the context of

multiclass queueing networks, is solved in [48] and [103]. Sufficient conditions for the exchange

of limits in multiclass networks is provided in [35]. These are conditions on the convergence

rate of a fluid limit to an invariant manifold. In [37], the exchange of limits is proven in the

case of stochastic fluid networks. The tightness of a sequence of diffusion scaled stationary

distributions, in the Halfin-Whitt asymptotic regime, is given in [89]. In this regime, along

with the service rate, the number of servers is also scaled up. This model finds application in

call centre traffic analysis. In [19], the authors justify the heavy traffic diffusion approximation

by showing convergence of moment generating functions (MGF) of the stationary distributions

of diffusion scaled processes. To do so, they use the basic adjoint relationship to characterize

the MGF. Using this method, they bypass the intermediate step of showing the existence of

the diffusion process, in the spirit of [54], which provided a two moment approximation for the

mean delay of a GI/GI/1 queue.

Providing different types of Quality-of-Service (QoS) to different flows has been explored

5

using different models. In the network utility maximization (NUM) framework [51, 52], the

network is modelled as a system of flows. One seeks to optimize a utility function of flow rates,

subject to flow constraints. The choice of utility function would determine the fairness criterion

involved in giving differential service to flows. The NUM problem may be considered a variant

of the weighted sum-rate maximization problem [97]. As the name suggests, in such schemes,

one optimizes a weighted sum of rates. Such a problem is in general quite computationally

complex. For instance, maximizing the sum rate under the SINR rate model, is non-convex

and NP-hard [61]. Approximate solutions to the sum rate maximization problem are provided in

[92], which uses SINR approximations and a max-min weighted SINR optimization. A number

of dual decomposition schemes, using primal/dual (sub)gradient methods, to solve the NUM

problem in a distributed manner, are given in [72]. A weighted backpressure scheme to address

various QoS requirements such as average delay and throughput is proposed in [86].

While explicitly providing QoS guarantees may not be easy, one may obtain approximate

guarantees. In the large queue length regime, one approach to provide mean delays is to

translate these requirements in terms of effective bandwidth and effective delay from Large

Deviations theory [29], and obtain solutions in the physical layer. In [84], the authors use this

technique for a K-user downlink scenario. Such techniques, however, cannot be applied easily

in the multihop context, owing to the complex coupling between the queues, which makes it

difficult to have a simplified one-to-one translation between delay requirements and control

actions [25]. Using Markov Decision Processes (MDPs) [73] has been another approach to

provide QoS [85]. In general settings, however, MDPs are not easy to handle owing to the

huge size of the state space. Control based on Lyapunov optimization is quite popular in the

multihop network setting. However, under general network models, it may be complex [34].

In general, it is not possible to design a high throughput, low complexity, low delay network

control policy [80]. However, one may not need to meet all these requirements simultaneously,

and for all flows. In [24], each node continuously keeps track of the minimum end-to-end

delay, bandwidth and cost from that node to every other destination node. Given the QoS

requirements for a flow, multiple paths are probed, from source to destination, and a feasible

path is chosen using a scheme of forwarded ‘tickets’, which will collect the delay information

along feasible paths. In [14], a one-to-one relationship is assumed between the given QoS

constraints and the SINR. Thus, one can convert QoS constraints to SINR constraints. Under

the additional assumption that the function mapping the feasible QoS set to the corresponding

SINR values is log-convex, one can show that the feasible QoS region is a convex set. However,

this additional assumption may not always hold. In [58, 57], the problem of minimizing power

while providing mean and hard delay guarantees is studied. However the algorithm requires

6

knowledge of system statistics and is not throughput optimal.

Age of Information (AoI) [50, 49] is a recently introduced and increasingly popular QoS

metric. In [50], the problem of minimizing the average AoI for M/M/1, D/M/1 and M/D/1

queues, under the First Come First Served (FCFS) discipline, is studied and analytical ex-

pressions were obtained for Average AoI for the first two cases. However, obtaining explicit

expressions for AoI may not be easy under other service disciplines or complex network assump-

tions. Later works looked at AoI for other single queue models, such as sharing of an M/M/1

FCFS queue by two traffic streams [100], an M/M/1 Last Come First Served (LCFS) queueing

system with and without preemption [101], and an M/M/2 system [46]. In [45], the authors

consider a single base station, with a number of nodes trying to communicate time-sensitive

data to it. They propose three policies to minimize average AoI subject to throughput require-

ments. They further show that the AoI obtained in their policies is a multiplicative factor away

from the optimal value. In [69], for a single queueing system the authors study the problem of

giving preemptive priority to one flow over another. They obtain closed-form expressions for

average age and average peak age.

In [7], the authors consider a multihop network with a single flow. Under the assumption

that service times are exponentially distributed, they show that the (preemptive) Last Come

First Served (LCFS) service discipline minimizes the age among all disciplines, in a stochastic

ordering sense. In [91], the authors study distributed stationary policies that are not dependent

on the channel state. Using these policies, they obtain tractable expressions for Average and

Peak AoI, which are then optimized over this class of policies. However, this class of policies

may be a small subset of all possible policies, and therefore not very likely to contain the

policy that minimizes age among all possible policies. In [44], the authors propose an age

based maxweight type scheduling policy that is throughput optimal, and further provide heavy

traffic approximations for its performance. A concise survey covering diverse aspects of AoI,

and giving a number of available AoI results for different system models, is [55].

1.2 System Model

In this work, we will be studying a multihop wireless network (see Fig 1.1). Such a system

consists of a number of nodes communicating to each other over a wireless medium. The nodes

represent communication devices. There will be flows, generated at some nodes (called source

nodes), destined to some other nodes (called destination nodes). These flows consist of packets

that have to be delivered. Some of these flows will also have service requirements. These are

referred to as Quality-of-Service (QoS) requirements. These may be of different forms, such as

an upper bound on the average end-to-end delay, or a minimum rate requirement. The type

7

node k

node j

node m

node n node i

node p
node l

Afi (t)

Qf
i (t)

Hin(t)

Figure 1.1: A simplified depiction of a multihop wireless network. Flow f starts from node i,
and hence has src(f) = i.

of QoS required by a flow depends on the application that generates it. An application that

live streams videos, for example, may have stringent delay requirements to be met by all the

packets that go from the source to the destination.

The network (Fig 1.1) is modelled as a graph G = (V,E) where V is the set of nodes

(vertices) and E ⊆ V× V being the set of edges (links) on V. This network evolves in discrete

time t = 0, 1, 2, 3, There are multiple source nodes sending packets to destination nodes

across the network. Each such stream of packets is called a flow. Denote the set of all flows

by F. For a flow f ∈ F, we use src(f) to denote its source node, and des(f) to denote its

destination. For a flow f , the discrete time random process denoting the arrival of packets to

its source node is denoted by Afsrc(f)(t). The nodes are connected by a time varying wireless

channel. The channel gain of the wireless link between nodes i and j at time t will be denoted

by Hij(t).

At each node, we will have multiple queues, one for each flow that passes through it. The

queue length corresponding to flow f at node i will be denoted by Qf
i (t). At each time instant

t, the system makes a control decision, as to how many packets from each flow are to be

transmitted over which links. This decision could be done in a centralized or distributed

manner. As a consequence of this decision, we obtain the scheduling and routing variables,

Sfij(t), which denotes the number of packets of flow f that are to be transmitted over link (i, j)

at time t. As a consequence of the control decision, the queues evolve as,

Qf
i (t+ 1) = Qf

i (t)−
∑
j∈V

Sfij(t) +
∑
k∈V

Sfki(t), (1.1)

8

for all nodes i 6= des(f) (since at the destinations the packets of the corresponding flow are

absorbed).

We will use Q(t) to denote the vector [Qf
i (t)]i∈V,f∈F. Similarly we have H(t) = [Hij(t)](i,j)∈E,

A(t) = [Afi (t)]i∈V,f∈F and S(t) = [Sfij(t)](i,j)∈E,f∈F. Under usual assumptions on the arrival and

service, we will be able to show that the process Q(t) evolves as a discrete time Markov chain.

This Markov chain is said be stable if it is positive recurrent.

In this thesis, we will be considering two different channel models: the SINR model, and a

graph based interference model. While the SINR model is more general, optimizing network

metrics under this model can be quite complex, due to the highly non linear interaction between

transmit rates of different links. Characterizing optimal control, therefore, is not easy. Graph

based models, on the other hand, allow us more freedom in characterizing performance. One

may use such models to gain insights about network performance. However, it must be noted

that obtaining throughput optimal control policies for scheduling and routing under both models

is generally an NP-hard problem [97].

In this thesis we will be providing different algorithms to design the S(t) process so as to

achieve flow requirements. These requirements include stability of the queue length process,

the mean delay meeting a deadline, the delay meeting a hard deadline with high probability,

and the age of the flow.

1.3 Contributions and Organization

In this thesis, we study the problem of wireless network control with QoS guarantees. To this

end, we propose different algorithms under different channel (interference) models, and analyze

their performance.

In Chapter 2, we study the problem of joint scheduling, routing and power control of a

multihop wireless network under the SINR interference model. We obtain a randomized control

policy for the same, which also contains provisions for mean delay and hard deadline guarantees.

Flows are given higher priority using a system of dynamic weights, which depend on queue

length as well as on whether the flow is meeting delay requirements at the destination node.

This algorithm is implemented in a distributed manner using gossip algorithms. Theoretically,

we show that the algorithm stabilizes a fraction of the capacity region. From simulations, we

can see that the algorithm outperforms similar randomized or distributed algorithms in the

literature.

In Chapter 3, we study the network scheduling and routing problem in a wireless network

with graphical interference constraints. We propose an algorithm, inspired by the notion of

draining time in fluid limits, to solve the control problem while giving QoS provisions. The QoS

9

provided are mean delay and hard deadline guarantees. The network control follows a system of

Discrete Review; here, control decisions are not made at every time slot. Instead, they are made

at the beginning of review periods, and the decisions are used to operate the network till the

beginning of the next review period. We also implement the algorithm in a distributed fashion

using an Incremental Gradient Ascent scheme. It is shown that the distributed algorithm

converges to the optimal value of the original centralized formulation. A modified version of

the algorithm is shown to be throughput optimal, by means of fluid limit analysis. For this, we

first obtain the fluid limit of the system state process, which is an ordinary differential equation

(o.d.e.). The o.d.e. trajectory is shown to be stable by constructing a suitable Lyapunov

function. The stability of the fluid limit o.d.e. implies the stability of the system. We also see

that the system provides good QoS performance.

In Chapter 4, we obtain the Diffusion approximation of a wireless network under graphical

interference constraints, for a control policy, similar to that of Chapter 3, under heavy traffic

scaling. A scaled sequence of processes is shown to converge weakly to a Brownian motion

with drift. This is done by decomposing the scaled workload process into two components, one

which converges weakly to a Brownian motion with drift, and the other which converges to the

regulating process corresponding to the Brownian motion. Consequently, the resulting process

is a Reflected Brownian Motion (RBM) with drift. This RBM has a stationary distribution,

which can be used as a proxy for the stationary distribution of the actual system. We show

that this approximation is theoretically justified, by proving that the sequence of stationary

distributions of the scaled systems converges to this distribution. We also verify this by means

of simulations. To the best of our knowledge, this is the first work to provide a throughput

optimal algorithm with a QoS provision.

In Chapter 5, we obtain an control algorithm that deals with the Age of Information (AoI)

problem in a multihop wireless network. We provide an algorithm that provides low average

AoI for flows. This is achieved by combining packet drops at nodes along with a weighted

control policy that uses queue and channel state information. This policy is motivated by our

policy in Chapter 3. By comparing with a theoretical lower bound, we demonstrate that the

policy is close to optimal. Using dynamic weights, we demonstrate how the average AoI of flows

can be selectively reduced and brought close to the lower bound. Simulations also show that

the algorithm performs better than standard algorithms in the literature. We also demonstrate

how the control policy can be implemented in a distributed manner.

In Chapter 6 we conclude the thesis, and present directions for future research.

10

Chapter 2

Joint Power Allocation, Routing and

Scheduling under the SINR model

In this chapter, we present a distributed algorithm for joint power control, routing and schedul-

ing in multihop wireless networks. The algorithm also provides for Quality of Service (QoS)

guarantees, namely, end-to-end mean delay guarantees and hard deadline guarantees, for dif-

ferent users. It is easily implementable and works by giving local dynamic priority to flows

requiring QoS, the priority being a function of the queue length at the nodes. We prove that

the algorithm stabilizes all arrival rates in a fraction of the capacity region. We also compare the

performance of the algorithm with other existing algorithms by means of extensive simulations,

and demonstrate its efficacy in providing QoS on demand.

2.1 System Model

We have a wireless multihop network (see Fig. 2.1) represented by a graph G = (V,E), evolving

in discrete time. As described earlier, the set of flows is F, the arrival process for flows is

A(t), the channel process is H(t), and the control vector is S(t). We will assume that the

arrival process is independent and identically distributed (i.i.d.) across time, and also that it

is independent across flows. The mean arrival rate is λfi = E[Afi (t)], and the mean arrival rate

vector is λ = [λfi]i∈V,f∈F. The channel process H(t) takes values from a finite set H and evolves

i.i.d. across time, with distribution γ.

Let us denote by Pij(t) the power used by node i to transmit to node j in time slot t.

The vector P (t) denotes [Pij(t)](i,j)∈E. The set of powers that are allowed will be denoted by

P = [0, Pmax]
|E|. This encapsulates constraints on the power. The rate of transmission from

node i to node j at time t will be denoted by µij(t), which is an achievable rate function,

11

node k

node j

node m

node n node i

node p
node l

Aji (t)

Qj
i (t)

Hin(t)

Figure 2.1: A simplified depiction of a Wireless Network

dependent on the channel state H(t) and the power allocation P (t). In this chapter we will be

using the SINR (Signal to Interference plus Noise Ratio) rate function,

µij(P (t), H(t)) = log2

(
1 +

Pij(t)Hij(t)

Nj +
∑

k∈V,k 6=i
∑

l∈V Pkl(t)Hkj(t)

)
, (2.1)

with Nj denoting the noise power at node j. This rate may be allocated to packets in one or

more of the flows in node i, to be transferred to the corresponding queue in node j. The rate

vector is µ = [µij](i,j)∈E.

Let Sfij(t) denote the number of packets of flow f transmitted on link (i, j) in time slot t.

Then, we may write the queue evolution equation as,

Qf
i (t+ 1) = Qf

i (t) + Afi (t) +Rf
i (t)−Df

i (t), (2.2)

where,

Rf
i (t) =

∑
k

Sfki(t) and Df
i (t) =

∑
j

Sfij(t), (2.3)

denote respectively, arrivals and departures by routing from the queue Qf
i . If we denote the

vectors [Qf
i (t)]i∈V,f∈F, [Rf

i (t)]i∈V,f∈F, [Df
i (t)]i∈V,f∈F by Q(t), R(t) and D(t), the queue evolution

can be written as,

Q(t+ 1) = Q(t) + A(t) +R(t)−D(t). (2.4)

12

We assume that the set of flows has a subset FQ, which are flows with QoS constraints. In this

chapter, we will be considering hard deadline and mean delay constraints. Define,

∆ij(t) = max
f

(Qf
i (t)−Q

f
j (t))

+. (2.5)

At any time t, the optimal power allocation P ∗(t) is defined to be the power allocation that

optimizes the maxweight problem, i.e.,

P ∗(t) = argP∈P max
∑

(i,j)∈E

∆ij(t)µij(P,H(t)). (2.6)

To characterize the performance of network control under this power allocation, we first define

the capacity region.

2.2 Capacity Region

Recall that the rate vector at time t is given by,

µ(t) = µ(P (t), H(t)) (2.7)

where P (t) is the power vector, and H(t) is the channel state, at time t. Define,

Mh = {µ(p, h) : p ∈ P}. (2.8)

Let Mh represent the convex hull of Mh. Define,

M =
∑
h

γhMh. (2.9)

We will now define the capacity region of the network.

Definition 2.1 The capacity region, Λ, is the set of all arrival rate vectors λ for which there

exists a vector $ = [$f
ij](i,j)∈E,f∈F which satisfies,

$f
ij ≥ 0, ∀i, j, f (2.10)

$f
ii = 0, ∀i, f, (2.11)

$i
ij = 0, ∀i, j, f, (2.12)

λfi ≤
∑
j

$f
ij −

∑
k

$f
ki, ∀i, f, (2.13)

13

∑
f

$f
ij ≤ mij, for some m ∈M. (2.14)

For stability, it is necessary that λ ∈ Λ,while λ ∈ int(Λ) is sufficient, where int(Λ) denotes the

interior of Λ. An algorithm that stabilizes all λ ∈ int(Λ) is called throughput optimal.

The following is a well known result.

Lemma 2.1 The power allocation given by (2.6) is throughput optimal.

A proof of this is provided in the appendix 2.A.

While the power allocation (2.6) is throughput optimal, it is not easy to solve the given

optimization problem. It is in general NP-hard [97]. Hence, there is a need for low complexity

algorithms that perform close to the benchmark provided by (2.6). A framework for obtaining

such an algorithm was given in [59]. However, using queue state information, one can hugely

improve its performance. Moreover, this scheme makes no provision for QoS. Since providing

QoS is central to wireless networking systems, we are interested in developing policies that

have both throughput guarantees and QoS provisions. Since providing throughput optimality

itself is a hard problem, providing policies that have QoS guarantees could be much harder.

We develop a low complexity policy that can give QoS, by trading off the network resources

between QoS and non QoS flows. In the absence of QoS requirements, the algorithm stabilizes

flows.

2.3 A Distributed Scheme Providing QoS

We propose a distributed algorithm (Algorithm 1) for joint scheduling, routing and power

control, while also making provision for mean delay guarantees and hard deadline guarantees.

This is an extension of the algorithm in [59]. However, it differs substantially from this algorithm

on two counts: first, that it uses queue length information in the scheduling process, and second,

that it makes provision for QoS as well. The use of queue length information is based on the

intuitive idea of giving those nodes that have a higher queue length, a higher probability of

becoming a transmitter. This should lead to improvement in performance. In this scheme,

those links which have a high queue length at the transmitting side, and a low queue length at

the receiving side, have a higher probability of being formed. This is a heuristic approach to

backpressure.

In each time slot, we independently generate a random variable χ, where,

χ =

1, w.p. σ,

0, w.p. 1− σ,

14

for some σ ∈ (0, 1). This may be generated by one node and communicated to all others by

signalling at the beginning of each time slot. Each node i computes,

Qi =
∑
f∈F

hf (qfi), (2.15)

where,

hf (x) =

θx2ηf + x(1− ηf), f ∈ FQ,

x, f ∈ F \ FQ,

with θ > 1. Here, ηf is one if the QoS constraint for flow f was met in the previous time slot,

and is zero otherwise. Thus Qi is a virtual queue length at node i, with extra weight being

given to the backlogs of those flows whose QoS requirements were not met. The nodes now use

Algorithm 2 (details of the working of Algorithm 2 are given in section 2.3.1), to compute, in

a distributed manner, U∗, which is a surrogate for U =
∑

i ui, where ui = min(Qi, B), with B

chosen to be a very large number. Node i decides to be a transmitter with probability ui
U∗

; else,

it becomes a receiver. As a result, nodes with a higher backlog of QoS packets have a higher

probability of being a transmitter, and hence, pushing the packets out of itself. The queues

with lesser backlog have a higher chance of being receivers. The algorithm thus dynamically

moves packets from bigger queues to smaller queues.

Each transmitter tries to randomly pair up with one of its neighbours, and establishes a

link if the neighbour chosen was neither a transmitter nor paired with any other node. Each

transmitter also picks a random power level for transmission. Over each link thus formed, we

schedule the flow that maximizes (hf (Qf
i) − hf (Q

f
j))

+ if χ = 1. Else, we choose the flow that

maximizes (Qf
i −Q

f
j)

+. During the slots where χ = 1, this will prioritize flows to provide QoS.

In other slots, this is needed for stability of the non-QoS flows. The variable χ captures the

trade-off between stability and QoS. In a timeslot with χ = 1, the system gives higher priority

to QoS delivery, over the stability requirements of the system. The value of σ = P{χ = 1}
captures this.

Next, we compute the rate-differential backlog product over each link ij. Let rij(t) denote

the difference of rates under the chosen random power allocation and the power allocation in

the previous slot, given by,

rij(t) = [µij(P̃ (t), H(t))− (1− α2)µij(P (t− 1), H(t))]. (2.16)

15

The rate-backlog product difference between the random and previous power allocations is given

by,

Mij =

rij(t)∆ij if χ = 0,

rij(t)(h
f∗ij(Q

f∗ij
i)− hf∗ij(Qf∗ij

i))+ if χ = 1.
(2.17)

We obtain M̃ , an estimate of
∑
Mij using Algorithm 2. If M̃ ≥ 0, we use the power p̃i at node

i; else we use the power used in the previous slot, as well as the corresponding scheduling. To

ensure that each node has knowledge of the rate at which it can transmit, all nodes are required

to send out signals of νP̃i(t) and νPi(t − 1) (ν being sufficiently small) at the same time; as

a result, each node may sense the power it receives, subtract the effect of its own power, and

obtain its interference level without coming to know the entire channel state. This technique

was used in [71].

The algorithm dynamically gives priority to the queues, depending on whether their QoS

constraints have been met. The flows which fail to meet the QoS criterion are given higher

weightage in the system, by means of the function h. We describe the working of Algorithm 2

below.

2.3.1 Gossip Algorithm

The gossip algorithm we use works on the following principle: Say we have K independent

random variables distributed exponentially with parameters y1, y2, ..yK . Then the minimum of

these random variables is an exponential random variable with parameter y1 + y2 + .. + yK .

Hence, in order to compute the sum of K values, generate exponential random variables with

these values as parameters, and compute their minimum. The inverse of this random variable is

an estimate for their sum. One may generate a number of such random variables and compute

the corresponding inverse of their average, for more accuracy.

A gossip algorithm on a graph operates by means of asynchronous exchange of information

between neighbouring nodes. Consider the network graph G = (V,E) with a gossip matrix

P defined on V × V . This matrix represents a transition probability matrix (t.p.m.) of a

Markov chain associated with this graph. This matrix is assumed to be symmetric and doubly

stochastic.

The gossip algorithm seeks to compute a sum. Let the nodes i ∈ V have associated non-

negative values vi. We seek to find an estimate of v =
∑

i vi within a level of accuracy. Let each

node i generate L random numbers, {x`i , 1 ≤ ` ≤ L}. Each of these numbers is an independent

16

sample, drawn from an exponential distribution with parameter vi. Consider the quantity,

x`∗ = min
i=1,...,|V|

x`i . (2.18)

Clearly, x`∗ is sampled from an exponential distribution with parameter
∑

i vi. Thus, the average∑L
`=1 x

`
∗

L
is an estimate of v.

To find x`∗, we do the following. For a sequence of times τ = 1, ..., T , in each time slot, each

node i contacts its neighbour j with probability Q(i, j). If node i contacts node j, and if they

have values x`i and x`j, they both update to min{x`i , x`j} for each ` ∈ {1, ..., L}.
We have the following result for the performance of this algorithm.

Lemma 2.2 Let ε, δ ∈ (0, 1
2
). Let L = 3δ−2 log(4ε−1). Assuming the gossiping matrix is

complete, the gossiping algorithm computes an estimate S̃ of the sum S, with S̃ ∈ [(1−δ)S, (1+

δ)S] for all nodes with probability greater than or equal to 1−ε in time T = O(δ−2 logNε−1δ−1).

The proof is provided in [78]. For completeness, we provide it in the appendix 2.B.

The overall distributed algorithm is given below as Algorithm 1, which uses, in turn Algo-

rithm 2 to compute sums.

17

Algorithm 1 Distributed Algorithm with provision for QoS

1: if t = 0 then ηf ← 0 ∀f ∈ F

2: end if

3: while t ≥ 0 do

4: Generate χ, with P{χ = 1} = σ = 1 − P{χ = 0}. Communicate its value to all nodes

by signaling.

5: At each node i :

6: Compute Qi =
∑

c∈F h
f (Qf

i).

7: Generate {Xj
i }Lj=1, i.i.d exponential with parameter ui = min(Qi, B).

8: By gossiping (Algorithm 2) estimate Xj
min = mini{Xj

i }Lj=1.

9: Calculate U∗ =

(
1

L

∑L
j=1X

j
min

)−1

.

10: Generate φ ∼ U[0, 1].

11: if φ <
ui
U∗

then i← transmitter

12: else i← receiver

13: end if

14: Each transmitter i picks a power pi ∼ U[0, pmax]. Pick a neighbour uniformly randomly

and send a request to pair (RTP).

15: Each receiver j waits for an RTP, pairs up with the first transmitter that sends it an

RTP.

16: Over any link (i, j) formed, schedule f ∗ij = argf∈F maxχ(hf (Qf
i) − hf (Qf

j))
+ + (1 −

χ)(Qf
i −Q

f
j)

+.

17: Each paired transmitter i beams νP̃ i and νP i(t− 1).

18: if χ = 0 then Mij ← ∆ijµij(t)

19: else Mij ← (hf
∗
ij(Q

f∗ij
i)− hf∗ij(Qf∗ij

i))+µij(t)

20: end if

21: Generate {Y j
i }Lj=1, i.i.d exponential with parameter Mij.

22: By gossiping (Algorithm 2) estimate Y j
min = mini{Y j

i }Lj=1.

23: Calculate M̃ =

(
1

L

∑L
j=1 Y

j
min

)−1

.

24: If M̃ ≥ 0, use the power and scheduling generated in the current slot. Else, use the

power allocation and scheduling from the previous slot.

25: For each flow f :

26: if QoS criterion was satisfied then ηf ← 0

27: else ηf ← 1

28: end if

29: Update this information in the network using gossiping.

30: end while 18

Algorithm 2 Gossip Algorithm

1: Each node i has L numbers Z1
i , . . . Z

L
i with parameter zi.

2: while k = 0, 1, .., T do at each node
3: Choose a neighbour with probability 1/N . Call it j.
4: Z l

i , Z
l
j ← min(Z l

i , Z
l
j) for each l = 1, . . . , L.

5: end while

2.4 Performance Analysis

We will obtain a bound on the stability region of Algorithm 1. To this end, we will need the

following Lemma, which is a version of Theorem 1 in [59]. For a fixed channel state, let µij(P)

denote the rate across link ij under power allocation P . Denote the optimal rates in slot t by

µij(P
∗(t)), where P ∗(t) is given by (2.6).

Lemma 2.3 Let an algorithm have power allocation sequence {P (t), t = 0, 1, 2, . . . } and let the

rate under its scheduling in time t be µij(P (t)), for each link ij ∈ E, and at each time t. Let

α1, α2 ∈ (0, 1). Define the events,

A(t) : =

{ ∑
(i,j)∈E

∆ij(t)µij(P (t)) ≥ (1− α1)
∑

(i,j)∈E

∆ij(t)µij(P
∗(t))

}

B(t) : =

{ ∑
(i,j)∈E

∆ij(t)µij(P (t)) ≥ (1− α2)
∑

(i,j)∈E

∆ij(t)µij(P (t− 1))

}

If there exist β1, β2 ∈ (0, 1) such that for all t,

P[A(t)] ≥ β1,P[B(t)] ≥ 1− β2,

the algorithm will stabilize the network for any arrival rate vector λ ∈ ρΛ where ρ < 1− (α1 +

(1− α1)α2)− 2

√
β2

β1

.

The proof of this lemma is provided in the appendix 2.C.

While ρ may be a small number, the utility of this result lies in the fact that we can provide

a stability result under very general rate models, including the SINR model, which is in general

quite difficult to analyze.

From the following Lemmas (2.4 and 2.5) we verify that Algorithm 1 satisfies the two

conditions of Lemma 2.3.

19

Lemma 2.4 Let α1 ∈ (0, 1). Then, for Algorithm 1, at every time t, we have P[A(t)] ≥ β1,

where β1 = (1− β3)(ε
2(1−α2

3)N3.5B2)N , with β3 ∈ (0, 1), α3 ∈ (0, 1
2NB

) and ε > 0.

Proof: In every slot, the probability of a node being a transmitter is ui/U
∗, where ui =

min(qi, B) and U∗ is the estimate of U =
∑

j∈V uj obtained by gossiping. Since each ui is less

than or equal to B, their sum, U , cannot exceed NB.

Pick α3 ∈ (0, 1
2NB

), and β3 ∈ (0, 1). It follows from Lemma 2.2 that using Algorithm 2

for gossiping, and running for O(log(nβ3
−1α3

−1)/α3
2) iterations, returns a value U∗ ∈ [(1 −

α3)U, (1+α3)U] with probability greater than or equal to 1−β3. We assume that the gossiping

algorithm runs for this sufficient number of iterations. Conditioned on this event(which we will

call C), we have the probability of selecting any link ab, independent of other links, given by

P(link ab|C) ≥ P(a is txr|C)
P(b is a rxr |C)

(no: of neighbours of a)

≥ ua
U∗

1

N

(
1− ub

U∗

)
.

Since C implies that (1− α3)U ≤ U∗ ≤ (1 + α3)U , we have

P(link ab|C) ≥ ua
NU(1 + α3)

(
1− ub

(1− α3)U

)
=

ua
NU(1− α2

3)

(
U − ub
U

− α3

)
.

Since U − ub =
∑

j∈V,j 6=b uj ≥ ua, and U ≤ NB,we have:

P(link ab|C) ≥ ua
N2B(1− α2

3)

(
ua
NB

− α3

)
≥ 1

N2B(1− α2
3)

(
1

NB
− α3

)
,

where we have assumed Qa ≥ 1, since any node having total queue length equal to zero can

be removed from the set of transmitters, without affecting the system’s performance. With B

being a large positive integer, ua = min(Qa, B) ≥ 1. Since we have chosen α3 ∈ (0,
1

2NB
), we

find that:

P(link ab|C) ≥ 1

2(1− α2
3)N3B2

.

Since the number of transmitter-receiver pairs (links) possible under our assumptions is less

20

than N , the probability of choosing any particular configuration of links is bounded from below

by (1
2(1−α2

3)N3B2)N . In particular, the probability of chosing the optimal link configuration is

bounded below by this value. Since the power vector is chosen independent of the links, and is

chosen uniformly randomly over the range [0, pmax]
N , the probability that the power vector is in

an ε radius around the optimal power vector is bounded below by (ε
N0.5)N , assuming Pmax = 1

(See Lemma 4 of [59] for details).

Since
∑

ij∈E ∆ijµij(P (t)) is a continuous function of P (t) for a fixed link configuration, for

any α1 ∈ (0, 1), there exists ε > 0 such that A is true for any p(t) which satisfies the event

{||P (t)− P ∗(t)|| < ε}. We have

P[A(t)|C] ≥ P[A(t)|C, S∗]P[S∗|C]

≥ P[{||P (t)− P ∗(t)|| < ε}|C, S∗]P[S∗|C]

≥
(ε

N0.5

)N 1

(2(1− α2
3)N3B2)N

,

where S∗ is the event corresponding to choosing the optimal link configuration. Using the

identity P[A(t)] ≥ P[A(t)|C]P[C], and since P[C] = 1− β3,the result follows. 2

Lemma 2.5 Let α2, β ∈ (0, 1). Then, for Algorithm 1, at every time t, P[B(t)] ≥ 1−β2,where

β2 = β + σ(1− β).

Proof: Let E be the event {χ = 0}. Conditioned on E, at each transmitter i, we generate L

exponential random variables, with parameter equal to Mij = ∆ij[µij(P̃ (t))− (1−α2)µij(P (t−
1))]. We need to estimate the sum M =

∑
ijMij, and if M ≥ 0, we go with the power allocation

P̃ (t), else we use P (t− 1).

Let α ∈ (0, 1), and pick L = 3(α)−2 ln(4/β). Then, assuming the Gossiping Algorithm

runs for T = O(log(Nβ−1α−1)/α2) iterations, it follows from Lemma 2.2 that the estimate

M̃ ∈ [(1 − α)M, (1 + α)M] with probability greater than or equal to 1 − β. Once these many

iterations are complete, we have {M ≥ 0} ⇐⇒ {M̃ ≥ 0}. We can see that

P[B(t)|E] = P[M ≥ 0] = P[M̃ ≥ 0] ≥ (1− β).

Since P[B(t)] ≥ P[B(t)|E]P[E] and P[E] = 1− σ,the result follows. 2

Combining Lemmas 2.3, 2.4 and 2.5, we obtain the following stability result for Algorithm

1.

21

Theorem 2.1 Algorithm 1 stabilizes the network for any arrival rate vector λ ∈ ρΛ where

ρ < 1− (α1 + (1− α1)α2)− 2

√
β2

β1

.

Proof: Follows from Lemmas 2.3, 2.4 and 2.5. 2

Hence, we are guaranteed stability for all arrival rates in the region ρΛ. Since δ1 is decreasing

as B increases, the guarantee that one can give in terms of achievable capacity region decreases

as a consequence. However, in simulations below we will see that increasing B, or letting it go

to infinity, does not reduce the stability region. The value of σ captures a trade-off between

QoS and stability.

Comparing our algorithm with [59], we can see that for the same values of α1 and α2, we

can obtain a better ρ by choosing corresponding values of σ and β. This is borne out by the

simulations where we compare the performance of the algorithms in terms of stability region.

Also, via extensive simulations we have seen that the algorithm actually provides a much larger

stability region than what is dictated by ρ. Thus, it is in fact a practically useful distributed

algorithm which provides end-to-end QoS in a multihop wireless network.

Even if the Gossip matrix is not complete, one may obtain the same result. However the

number of timeslots in which one needs to operate the gossip algorithm will be much higher.

Exact expressions may be calculated for these as well [78].

One may observe that since the algorithm guarantees stability for all arrival rate vectors

contained in ρΛ, it naturally provides for rate guarantees for any flow that generates packets

at a constant rate within this region.

2.5 Simulation Results

For the simulations, we consider networks of 10, 15 and 20 nodes, with the nodes distributed

randomly uniformly in a unit square. We assume Rayleigh fading between the nodes, as well

as that packet arrivals are i.i.d across slots with Poisson distribution. The rate function, as

mentioned earlier, will be the SINR rate function. For all the simulations we will use σ = 0.999

and B = 105. While these values reduce the theoretical value of ρ as given by Lemma 2.3, it is

evident from the simulations that they enhance the performance.

We first compare the stability region that our algorithm offers, and compare it to two

distributed algorithms: Lee [59] and Distributed DRPC [71]. For a network of 20 nodes we see

that our algorithm outperforms both the others in terms of stability, when the number of flows

is five (Fig. 2.2), as well as when it is fifteen (Fig. 2.3). We plot the change in total queue

length as arrival rate at all nodes is increased uniformly. From the figures it is clear that our

algorithm offers a huge improvement as far as stability is concerned.

22

0 2 4 6 8

·10−3

0

0.5

1

1.5

2
·104

Per Flow Arrival Rate

S
u
m

Q
u
eu

e
L

en
gt

h
Algorithm of [59]

Distributed DRPC [71]
Algorithm 1

Figure 2.2: Stability Region for our algorithm for a network with 20 nodes and 5 flows

0 5 · 10−2 0.1 0.15 0.2
0

0.5

1

1.5

2
·104

Per Flow Arrival Rate

S
u
m

Q
u
eu

e
L

en
gt

h

Algorithm of [59]
Distributed DRPC [71]

Algorithm 1

Figure 2.3: Stability Region for our algorithm for a network with 20 nodes and 15 flows

23

The first QoS parameter that we will consider is mean delay guarantee. For such a flow

f , at its destination node, the mean end-to-end delay is computed empirically, by averaging

over all packets of that flow that arrive at the destination. If this value is greater than the

mean delay required by the flow, the corresponding ηf (t) is set to 1. We present case studies

of networks of 10 and 15 nodes, with the number of QoS flows being one or two. Each scenario

is studied for a fixed value of the arrival rate vector, which is chosen within the capacity region

of the network.

Table 2.1 gives the mean delay values of the QoS flow for two cases. Network 1 is a case

of 10 nodes with 7 flows, of which one flow requires a mean delay guarantee. Network 2 is a

case of 15 nodes with 10 flows of which one requires a mean delay guarantee. The value of the

parameter θ used for giving priority, is 10 in both cases.

Table 2.2 corresponds to a network of 10 nodes with 7 flows, of which two flows are mean

delay constrained flows, and θ = 5. Table 2.3 is for 15 nodes with 7 flows, of which two flows

require mean delay guarantees, and θ = 10.

From the simulations it is evident that the value of θ may be increased in order to gain a

better performance. Also, in the case of multiple flows with QoS requirements, the flows are

likely to compete with each other as well, in order to have their share of the system resources.

In Table 2.3, both QoS flows are given the same priority (as indicated by θ), one may also use

different θ values corresponding to different flows. Due to the fact that the system is controlled

in a distributed fashion, the number of QoS demands it can support simultaneously may not be

huge. One also observes that the mean delay cannot always be brought down below a particular

value. This in some sense is the limit of what the algorithm can achieve, given the network

resources, for this particular form of the function h. This value is a function of the arrival rate

vector.

The next QoS parameter is hard deadline guarantee. In this case the QoS is specified by

two values, a delay deadline d and a dropping ratio r, and it is required that no more than r

fraction of the packets have a delay more than d. The value of r is estimated empirically, and

if this is greater than the required dropping ratio, the corresponding ηf (t) is set to 1.

Table 2.4 gives the delay performance of a 10 node network with 8 flows, of which three

are QoS flows: two have a mean delay requirement, and one has a hard deadline. To meet

the hard deadline, the stability region has reduced. The hard deadline flow has to meet a

delay deadline of 70. The mean delay flows have h(x) = 10x2 and the hard deadline flow has

h(x) = 20x2. Note that the hard deadline is achieved for 94.9%, 97% and 98% of the packets, as

required, with little impact on the mean delay performance. Note that running the algorithm

of [59] results in a mean delay of 127 and 104 respectively, for flow 1 and 2 respectively; and

24

the drop ratio for flow 3 is 52.7% (this is the fraction of packets that violates the end to end

hard deadline). We see from simulations that we need to set the θ value for flows having hard

deadline to be at least twice that for mean delay constrained flows.

Table 2.1: One flow with mean delay requirement
Network 1 Network 2

Delay Tar-
get (slots)

Delay
Achieved
(slots)

Delay Tar-
get (slots)

Delay
Achieved
(slots)

200 202 350 353
180 181 300 292
150 152 230 236
120 121 200 212
100 100 180 193
80 83 150 160
60 61 120 149

Table 2.2: Two flows with mean delay requirement
Flow 1 Flow 2

Delay Tar-
get (slots)

Delay
Achieved
(slots)

Delay Tar-
get (slots)

Delay
Achieved
(slots)

230 233 230 231
200 210 200 199
200 198 160 165
160 160 200 201
160 160 140 151
140 141 140 143
120 135 140 157

2.6 Conclusion

In this chapter, we have obtained a distributed algorithm for routing, power control and schedul-

ing of links using queue length dependent cross-layer schemes under the SINR model of inter-

ference, while simultaneously providing mean delay guarantees and hard deadline guarantees.

Distributed implementation of control was done using gossip algorithms. Simulations demon-

strate that the scheme provides significant improvement over existing approaches, as well as

its ability to provide delays close to what is demanded by the users. The stability region ex-

25

Table 2.3: Two flows with mean delay requirement
Flow 1 Flow 2

Delay Tar-
get (slots)

Delay
Achieved
(slots)

Delay Tar-
get (slots)

Delay
Achieved
(slots)

300 308 300 330
250 248 250 256
200 210 250 270
150 169 200 202
180 182 180 189
160 185 160 179

Table 2.4: Two mean Delays and one hard deadline
Flow 1 Flow 2 Flow 3

Delay
Target
(slots)

Delay
Achi-
eved
(slots)

Mean
Delay
in [59]
(slots)

Delay
Target
(slots)

Delay
Achi-
eved
(slots)

Mean
Delay
in [59]
(slots)

Drop
ratio
Target

Drop
ratio
Achi-
eved

Drop
Ratio in
[59]

30 31 40 41 5% 5.1%
30 31 127 40 41 104 3% 3% 52.7%
30 31 40 40 2% 2%

pressions, as well as simulations indicate that asking for more QoS effectively diminishes the

amount of traffic the system can support.

26

2.A Proof of Lemma 2.1

We show that the algorithm stabilizes all λ ∈ int(Λ). Consider the Lyapunov function,

L(Q(t)) =
∑
i,f

(Qf
i (t))

2. (2.19)

Define the single step Lyapunov drift,

∆(t) = E[L(Q(t+ 1))− L(Q(t))|Q(t)]. (2.20)

It suffices to show that, for any λ ∈ int(Λ), ∆(t) < 0 for Q(t) with values outside a compact

set. Observe that, due to the queue evolution equation,

∆(t) =
∑
i,f

E
[
[Afi (t) +Rf

i (t)−Df
i (t)]2 + 2Qf

i (t)[A
f
i (t) +Rf

i (t)−Df
i (t)]|Q(t)

]
. (2.21)

Note that the arrival process is independent of the queue state, and the arrival process has finite

second moment. Further, we have assumed that the channel gains are bounded and power is

chosen from a compact set, which would imply that the rates are bounded. Hence, we can see

that there is a finite positive constant B such that,∑
i,f

E
[
[Afi (t) +Rf

i (t)−Df
i (t)]2|Q(t)

]
< B. (2.22)

We can write,∑
i,f

E
[
Qf
i (t)[A

f
i (t) +Rf

i (t)−Df
i (t)]|Q(t)

]
=
∑
i,f

E
[
Qf
i (t)[λ

f
i +Rf

i (t)−Df
i (t)]|Q(t)

]
(2.23)

where we used the independence of A(t and Q(t). Since λ is in the interior of Λ, there exists a

vector $ = [$]fij and ε > 0 satisfying ,

λfi + ε <
∑
j

$f
ij −

∑
k

$f
ki. (2.24)

27

Hence, we may write,∑
i,f

E
[
Qf
i (t)[λ

f
i +Rf

i (t)−Df
i (t)]|Q(t)

]
≤
∑
i,f

E
[
Qf
i (t)[−ε+ d̃fi − r̃

f
i +Rf

i (t)−Df
i (t)]|Q(t)

]
,

(2.25)

where d̃fi =
∑

j $
f
ij and r̃fi =

∑
k$

f
ki. It is easy to see that there exists a stationary policy with

random rates R̃f
i =

∑
k S̃

f
ki and D̃f

i =
∑

j S̃
f
ij such that,

E[D̃f
i − R̃

f
i |Q(t)] = d̃fi − r̃

f
i . (2.26)

Using this in (2.25), we see that,∑
i,f

E
[
Qf
i (t)[λ

f
i +Rf

i (t)−Df
i (t)]|Q(t)

]
≤
∑
i,f

E
[
Qf
i (t)[−ε+ D̃f

i − R̃
f
i +Rf

i (t)−Df
i (t)]|Q(t)

]
,

(2.27)

= −ε
∑
i,f

Qf
i (t) + E[

∑
i,j,f

(Qf
i −Q

f
j)(S̃

f
ij − S

f
ij)|Q(t)].

(2.28)

From the formulation of the policy, it can be seen that the last term is negative. Moreover,

choosing Q(t) to be outside a large enough compact set, we see that ε
∑

i,f Q
f
i (t) becomes larger

than B. Consequently, the Lyapunov drift ∆(t) is negative, and the system is stable.

28

2.B Proof of Lemma 2.2

We are required to compute the time to calculate L different minima by gossiping, with a

gossiping matrix P . Note that the time to calculate one minimum is not more than the time

for all nodes to get one piece of information, which was initially with n arbitrary node. Hence,

we first consider the problem of single piece information dissemination.

We consider a graph G = (V,E), with |V| = n. A single node has some information which

needs to reach all other nodes. At each time t, a node i contacts its neighbour with probability

Pij, and once they come in contact, and if one of them has the information, at the end of the

time slot, both will have the information. Let P = [Pij]i,j∈V.

Let I(t) denote the set on nodes that have the information. Clearly, |I(0)| = 1, and |I(t)| is
non decreasing in t and bounded by N , the number of nodes.

Phase I

First we consider all times t such that I(t) ≤ n
2
. In this phase we will be considerng the push

aspect of information exchange, i.e., a node which has the information contacts a node without

it, and transmits it. The time taken in this phase will be an upper bound for the case with

both push and pull, the latter being information exchange when a node without information

connects to a node with information. Let Xj be the event that a node j which is not in I(t) at

time t receives the information. Then,

E[Xj|I(t)] = 1− Πi∈I(t)(1− Pij), (2.29)

≥ 1− Πi∈I(t) exp(−Pij), (2.30)

= 1− exp

−∑
i∈I(t)

Pij

 , (2.31)

≥
∑

i∈I(t) Pij

2
, (2.32)

where in the last line we used the fact that for x ∈ [0, 1], exp(−x) ≤ 1− x
2
. We may write,

E[|I(t+ 1)| − |I(t)||I(t)] =
∑
j /∈I(t)

E[Xj|I(t)] ≥
∑

i∈I(t),j /∈I(t) Pij

2
. (2.33)

For the matrix P , its conductance 0 is defined as,

0 = min
I⊂V,|I|≤n

2

∑
i∈I,j /∈I Pij

|I|
. (2.34)

29

As we have assumed |I(t)| ≤ n
2
, it follows that,

E[|I(t+ 1)| − |I(t)||I(t)] ≥ |I(t)|0
2

. (2.35)

We seek to find a bound on the time that |I(t)| exceeds n
2
. Let us define,

τ = inf{t : |I(t)| > n

2
}. (2.36)

Define the process,

Z(t) =

exp

(
0t

8

)
|I(t)|

. (2.37)

Next, we proceed to show that Z(τ ∧ t) is a supermartingale. In the case that |I(t)| > n
2
, clearly

τ ∧ t+ 1 = τ ∧ t+ 1, and hence,

E[Z(τ ∧ t+ 1)|I(τ ∧ t)] = E[Z(τ ∧ t)|I(τ ∧ t)] = Z(τ ∧ t). (2.38)

Now suppose |I(t)| ≤ n
2
. In this case, τ ∧ t+ 1 = (τ ∧ t) + 1. Also, since the function g(x) = 1

x

is convex for x > 0, we can see that, for positive x1, x2

1

x2

≥ 1

x1

− x2 − x1

(x1)2
. (2.39)

Substituting x1 = |I(t+ 1)| and x2 = |I(t)|, and noting that, since we are considering only the

push effect, |I(t+ 1)| ≤ 2|I(t)|, we obtain,

1

|I(t+ 1)|
≤ 1

|I(t)|
− 1

4|I(t)|2
(|I(t+ 1)| − |I(t)|). (2.40)

Thus one obtains,

E[
1

|I(t+ 1)|
|I(t)] ≤ 1

|I(t)|
exp

(
−0

8

)
. (2.41)

Thus, we have that,

E[Z(τ ∧ t+ 1)|I(τ ∧ t)] = E

exp
(

0(τ∧t+1)
8

)
|I(τ ∧ t+ 1)|

|I(τ ∧ t)

 , (2.42)

30

= exp
0(τ ∧ t)

8
exp

0

8
E
[

1

|I(τ ∧ t+ 1)|
|I(τ ∧ t)

]
≤ Z(τ ∧ t). (2.43)

Thus Z(τ ∧ t) is a supermartingale. Thus, E[Z(τ ∧ t)] ≤ E[Z(τ ∧ 0)] = 1. Also note that,

Z(τ ∧ t) ≥
exp

(
0(τ∧t)

8

)
n

. (2.44)

Thus,

E
[
exp

(
0(τ ∧ t)

8

)]
≤ n. (2.45)

Now, exp(0(τ∧t)
8

) → exp(0(τ)
8

) as t → ∞. Hence, by the Monotone Convergence Theorem [3],

we have,

E
[
exp

(
0τ

8

)]
≤ n. (2.46)

Hence,

P[τ > t] = P
[
exp

(
0τ

8

)
> exp

(
0t

8

)]
(2.47)

≤ n exp

(
−0t

8

)
. (2.48)

For t = 8
0

log(2n2

ε
),

P[τ > t] ≤ ε

2n
. (2.49)

Thus the time of Phase I is O(logn+log ε−1

0
) with probability greater than 1− ε

2n
.

Phase II

In this phase, n
2
< |I(t)| ≤ n. In this phase, we consider only the pull aspect of information

transfer. Let node j ∈ I(t)c. Similar to what we had earlier, in this phase we can write,

E[|I(t)c| − |I(t+ 1)c||I(t)c] ≥
∑

j∈I(t)c,i∈I(t)

Pji, (2.50)

31

which implies that,

E[|I(t+ 1)c||I(t)c] ≤ |I(t)c|(1− 0). (2.51)

Now, observe that,

E[|I(t)c|] = E[E[|I(t)c||I(t− 1)c]], (2.52)

≤ (1− 0)E[|I(t− 1)c|], (2.53)

≤ (1− 0)tE[|I(0)c|], (2.54)

≤ exp(−0t)n
2
. (2.55)

For t = logn2ε−1

0
, we see that,

P[|I(t)c| > 0] ≤ ε

2n
. (2.56)

Thus, single piece information dissemination with probability greater than 1 − ε
n

takes

time O(logn+log ε−1

0
). Thus, for L pieces of information, being shared in a round robin fashion,

the time required for computation of minimums with probability greater than 1 − ε will be

O(L(logn+logL+log ε−1)
0

).

Let X1, X2, . . . , Xk be k i.i.d. exponential random variables with mean λ. Then, for any

δ ∈ (0, 1
2
), it can be shown [15] that,

P

(∣∣∣∣∣1k
k∑
i=1

Xi − λ

∣∣∣∣∣ ≥ δλ

)
≤ 2 exp

(
−kδ

2

3

)
. (2.57)

Since we are using the symmetric matrix for gossiping, where Pij = 1
n

for all i, j, we have

0 = O(1). Substituting these values for the given value of L yields the result.

32

2.C Proof of Lemma 2.3

We give a sketch of the proof (For detailed proof see [59]). Consider the Lyapunov function,

L(Q(t)) =
∑
i,f

(Qf
i (t))

2. (2.58)

Then, we can write the T -step Lyapunov drift as,

∆(T) = E[L(Q(t+ T))− L(Q(t))|Q(t)], (2.59)

=
T−1∑
τ=0

E[L(Q(t+ τ))− L(Q(t+ τ − 1))|Q(t)]. (2.60)

Recall the queue evolution equation,

Q(t+ 1) = Q(t) + A(t) +R(t)−D(t), (2.61)

and define X(t) = D(t)−R(t). Observe that,

E[L(Q(t+ τ))− L(Q(t+ τ − 1))|Q(t+ τ − 1)] = E[
∑
i,f

(Afi (t)−X
f
i (t))2 + 2Qf

i (A
f
i (t)−X

f
i (t))].

(2.62)

The first term can be bounded as follows. Assuming E[(Afi (t))
2] ≤ B1 and µij(t) ≤

√
B2, we

obtain,

E[
∑
i,f

(Afi (t)−X
f
i (t))2] ≤ 2E[

∑
i,f

(Afi (t))
2 + (Xf

i (t))2] ≤ 2(B1 + |V|2B2)(|V||F|) := C1. (2.63)

Using this in (2.60), and noting that the arrival process at time t is independent of the queue

length at time t, we obtain,

∆(T) ≤ C1T +
T−1∑
τ=0

2E[〈Q(t+ τ − 1), λ−X(t+ τ − 1)〉|Q(t)]. (2.64)

If X∗(t) is the value of X(t) corresponding to the optimal allocation, and we define,

Υ(t) = 〈Q(t), X∗(t)−X(t)〉, (2.65)

33

we can write,

∆(T) ≤ C1T + 2
T−1∑
τ=0

E [〈Q(t+ τ − 1), λ−X∗(t+ τ − 1)〉+ Υ(t+ τ − 1)|Q(t)]. (2.66)

Define,

τ1 = inf
s≥0
{〈Q(t+ s), X(t+ s)〉 ≥ α1〈Q(t+ s), X∗(t+ s)〉}, (2.67)

τ2 = inf
s≥0
{B(t) fails at time t+ τ1 + s} − t. (2.68)

For τ ≤ τ1 and τ ≥ τ2, we have,

Υ(t+ τ) ≤ 〈Q(t), X∗(t)〉+ C2. (2.69)

Also, for τ1 ≤ τ ≤ min{T, τ2}, we have,

Υ(t+ τ) ≤ (1− (1− α1)(1− α2))〈Q(t), X∗(t)〉 − C3. (2.70)

Using the fact that E[τ1] ≤ 1
β1

and E[T −min{T, τ2}] ≤ β2T
2, we obtain,

T−1∑
τ=0

E[Υ(t+ τ)|Q(t)] ≤ T (1− (1− α1)(1− α2) +
1

β1T
+ β2T)〈Q(t), X∗(t)〉+ C4. (2.71)

Let λ be in the interior of ρΛ for some ρ > 0. Then, there exist 0 < ε < 1 and variables X̃ such

that, for all t,

〈Q(t), λ+ 1ε〉 ≤ ρ〈Q(t), X̃〉 ≤ ρ〈Q(t), X∗(t)〉, (2.72)

where 1 is the vector of all ones. Hence we obtain, for all t,

〈Q(t), λ−X∗(t)〉 ≤ −ε
∑
i,f

Qf
i (t)− (1− ρ)〈Q(t), X∗(t)〉. (2.73)

Combining (2.71), (2.73) and (2.66), and choosing T =
√

1
β1β2

, we see that the T step Lyapunov

drift is negative, for sufficiently large values of queue length, for any arrival rate vector λ ∈ ρΛ

where ρ < 1− (α1 + (1− α1)α2)− 2

√
β2

β1

. This implies the result.

34

Chapter 3

A Distributed Draining Time Based

Scheduling Algorithm with Graphical

Interference Constraints

Using the notions of Draining Time and Discrete Review from the theory of fluid limits of

queues, an algorithm that meets delay requirements to various flows in a network is constructed.

The algorithm involves an optimization which is implemented in a cyclic distributed manner

across nodes by using the technique of iterative gradient ascent, with minimal information

exchange between nodes. The algorithm uses time varying weights to give priority to flows. The

performance of the algorithm is studied in a network with interference modelled by independent

sets. We modify the formulation to obtain an algorithm with similar performance, and is

throughput optimal as well. The throughput optimality is demonstrated using fluid limits.

3.1 System Model

We consider a multihop network (see Fig. 3.1), given by a graph G = (V,E) where V =

{1, 2, .., N} is the set of vertices and E, the set of links on V . We have directional links, with

link (i, j) from node i to node j having a time varying channel gain Hij(t) at time t. The

channel vector is H(t) at time t, and it takes values from a finite set H, with distribution γ.

The set of flows is F and the arrival process is A(t) as before. In this chapter we assume that

the flows have fixed paths, from source to destination. The paths can be chosen in an efficient

way using routing algorithms (see [1] for a survey). We will assume that the links are sorted

into M interference sets I1, I2, . . . , IM . At any time, only one link from an interference set can

be active. A link may belong to multiple interference sets. In this work we will assume that any

35

kn

m

j i

p

l

A
j
i (t)

Q
j
i (t)Hij(t)

Figure 3.1: A simplified depiction of a Wireless Multihop Network

two links which share a common node will fall in the same interference set. The algorithm may

be extended to a different interference model by an appropriate modification of the distributed

projection step in Section 3.3.2. Note that this interference model is different from the one used

in Chapter 2, where we had the SINR model, which was more general. Nevertheless we can

approximate SINR type rates even with a graphical interference model, by choosing a suitable

rate function that maps schedules to rates.

For a flow f ∈ F, let src(f) denote its source node, and des(f) its destination.

Let K be the set of all link-flow pairs. A schedule s is a mapping s : K → {0, 1}. Let the

set of all schedules be given by S. For a channel state h ∈ H and a schedule I ∈ S, we have a

rate function,

µ = µ(H(t), I). (3.1)

This will be some achievable rate function. Note that if two interfering links are present in a

schedule s, µij(h, s) = 0 for all h ∈ H and all (i, j) ∈ E. If none of the links interfere with

each other, µfij(h, s) = fij(h), where f is some achievable rate function. Let Sfij(t) denote the

number of bits of flow f transmitted over link (i, j) at time t. Define,

Rf
i (t) =

∑
k 6=i

Sfki(t), D
f
i (t) =

∑
j 6=i

Sfij(t). (3.2)

Let R(t) and D(t) denote the vectors [Rf
i (t)]i∈V,f∈F and [Df

i (t)]i∈V,f∈F respectively. Then we

36

τ1 τ2 τ3τ3

Q(t)

T1 T2

Figure 3.2: Review Times

have the queueing equation in vector notation,

Q(t+ 1) = Q(t) + A(t) +R(t)−D(t). (3.3)

3.2 Discrete Review

While the system evolves in discrete time, t ∈ {0, 1, 2, ..}, making control decisions at all time

slots may be expensive. We consider a system of Discrete Review (See [62], [65] for discussions).

This involves an increasing sequence of times 0 ≤ T1 < T2 . . . (see Fig. 3.2). At each Ti we make

control decisions for the network, by solving an appropriate optimization problem. In the time

frame [Ti, Ti+1), we will assume that the channel gains of different links are fixed (slow-fading),

but drawn as an i.i.d sequence from a distribution γ on H.

3.2.1 An Optimization based on Draining Time

What optimization do we perform at each review instant Ti? To formulate this problem, we

will use some intuition from the idea of draining time for a fluid queue. Assume that we have

a single queue evolving in continuous time. A flow arrives to the queue at a fixed rate c1. This

flow is served at a fixed rate of c2. Then, the draining time, for a given initial condition, is

defined to be the time for the queue to become empty. If the initial level of fluid in the queue

was x, the fluid level at time t is given by (assuming c2 > c1),

q(t;x) = max(x− (c2 − c1)t, 0).

The draining time in this case is given by τ =
x

c2 − c1

(see Figure 3.3). For a network of queues,

37

q(t;x)

t

x

τ

Figure 3.3: Draining Time

we can see that the rate of change of fluid in the queue can be written as,

d

dt
qfi (t;xfi) = λfi +

∑
k 6=i

ζfki(t)µki −
∑
j 6=i

ζfij(t)µij

where qfi (t;xfi) denotes the amount of fluid in the queue at time t, starting from an initial

condition xfi ,
d
dt

denotes the derivative, µij denotes the rate available on link (i, j), and the

variables ζfij are defined as the fraction of time flow f is scheduled on link (i, j). Clearly, they

must satisfy, ∑
f

ζfij(t) ≤ 1 ∀(i, j) ∈ E, (3.4)

ζfij(t) ≥ 0 ∀(i, j) ∈ E, f ∈ F. (3.5)

In unit time, the total amount of flow f passing through link (i, j) is less than or equal to ζfijµij.

Note that it is not always equal, because the queue may not have that many packets available

to serve. Recall that in a review period, by our assumption, the service rate is fixed.

Draining time captures in some sense the delay associated with a flow. It is the time that an

arrival at time t = 0 would have to wait before it gets served, assuming first-in-first-out service

discipline. In a multihop network, the draining time will be given by the smallest τ that solves

the equation

∑
j 6=i

µij

∫ τ

0

ζfij(t)dt−
∑
k 6=i

µki

∫ τ

0

ζfki(t)dt− λ
f
i τ = xfi .

Calculating this requires knowledge of arrival rates and the scheduling decisions of other nodes,

38

and is not easy to obtain locally at a queue qfi . Therefore, we define a pseudo draining time,

assuming further that ζfij(t) = ζfij,

Df
i =

xfi∑
j 6=i µijζ

f
ij

.

This Df
i is a lower bound to draining time. The draining time of the queue qfi would be Df

i if the

queue had no inflow, and was serving at constant rate
∑

j 6=i µijζ
f
ij. Consider the optimization

max
∑
i,f

wfi
Df
i

,

where wfi is a weight corresponding to flow f on node i. Choosing wfi = θf (xfi)
2, where θf is a

positive constant, we obtain

max
∑
i,j,f

θfxfi ζ
f
ijµij, (3.6)

s.t 0 ≤ ζij :=
∑
f∈F

ζfij ≤ 1 ∀ij, (3.7)

0 ≤
∑

(i,j)∈Im

ζij ≤ 1, ∀m. (3.8)

where the first constraint corresponds to the fact that only one flow can be scheduled across

a link, and the second constraint corresponds to interference constraints on the links. This is

also the standard weighted-rate maximization problem [97], with the weight given to rate µij

being
∑

f θ
fxfi ζ

f
ij.

3.2.2 Optimization at Review Times

At each Ti we make control decisions for the network, by solving the optimization problem

(3.6)-(3.8), by choosing,

xfi = Qf
i (Ti), (3.9)

µij = µij(H(Ti), Iij) (3.10)

and Iij corresponds to a schedule in which link (i, j) is on, and none of the links that interfere

with it are on. We solve the fluid problem, and obtain scheduling variables corresponding to

those fluid variables, at every review instant.

39

Each node transmits at a fixed power P . The rate function is chosen to be µij = log(1+
HijP

σ2).

Consider a packet of flow f which arrives at node i at the beginning of a review period. Such

a packet observes a backlog of xfi in its queue. The total service allocated to flow f over link

(i, j) in that period is ζfij(Ti+1 − Ti)µij where ζfij ≤ 1. The times are chosen as

Ti+1 − Ti = a1 log(1 + a2

∑
i,f

Qf
i (Ti)), (3.11)

where a1, a2 are positive constants.

3.2.3 Providing Quality-of-Service

We will be solving the optimization problem defined by equations (3.6)-(3.8) at every discrete

review instant. In order to incorporate QoS constraints, we will let θf vary dynamically. Let

flow f1 require its mean delay to be less than or equal to d1. At the destination node of f1,

we estimate empirically its mean delay in the last review period. If it is greater than d1, we

set θf1 = θ̂ > 1; otherwise, θf1 = 1. Thus the control variables corresponding to the flows

that require QoS obtain higher weight in the optimization problem, if its QoS requirement

was not met during the previous review period. For a hard deadline guarantee flow, we have

two parameters, the hard deadline and the drop ratio, which is the percentage of packets we

are willing to allow with delays larger than the hard deadline. At every review instant, at

the destination of that flow, we check whether the percentage of packets that have arrived

with delays larger than the deadline, exceeds the drop ratio. If yes, we set θf = θ̂. In the

next section we will provide a distributed algorithm for the optimization problem defined by

equations (3.6)-(3.8).

3.3 Distributed Optimization

Let K be the set of all link-flow pairs ((i, j), f). For any k ∈ K, there exists a link (i(k), j(k))

and a flow f(k). A schedule is a vector s of length |K|, with each element s(k) corresponding

to the fraction of time link (i(k), j(k)) transmits flow f(k). The feasible set S is the set of

schedules that satisfy constraints (3.7) and (3.8); however, we remove the positivity constraint.

Note that this changes the search space, but does not change the optimal value or the optimal

point, since the quantity being maximized is a weighted sum of ζcij with positive weights. The

set S will be a convex polytope, since it is generated by linear inequalities, and will be a closed

subset of R|K|.

40

We can rewrite equations (3.6) through (3.8) as

max
s∈S

∑
k∈K

fk(s) (3.12)

where,

fk(s) = wkµks(k), wk = θc(k)x
c(k)
i(k) , µk = µi(k)j(k), s(k) = ζ

c(k)
i(k)j(k). (3.13)

3.3.1 Incremental Gradient Ascent

In order to optimize (3.12), we will use the incremental gradient method [8]. This involves the

iteration

sj+1 = ΠS(sj + αj∇fkj(sj)), (3.14)

with kj = j modulo |K|+ 1, and ΠS denotes projection onto the set S. Let v(r) denote a vector

which is one only at its rth index and zero elsewhere. We can write

∇fkj(sj) = wkjµkjv(kj).

Hence we may rewrite equation (3.14) as

sj+1 = ΠS(sj + αjwkjµkjv(kj)). (3.15)

3.3.2 Projection

Since interference exists between two links that share a node, an update of the optimization

variables at a link affects those links which share a node with it. The constraint set S is defined

by the intersection of half-spaces {Hi}Mi=1, where

Hi = {s : 〈s,νi〉 ≤ βi},

where νi is the unit normal vector to the plane, with ||νi||2 = 1. For example, the interference

constraint

s1 + s2 + s4 ≤ 1, (3.16)

41

S

Hv

Hu

Hw

A B

C

D
E

s

s
′

s
′′•

•

•

Figure 3.4: Single Step Projection

S

Hv

Hu

Hw

A B

C

D
E

s
′

s1

s2

s3 •
•

•
•

Figure 3.5: Multi Step Projection

can be represented by,

〈s,νj〉 ≤ βj, (3.17)

where

νj =
1√
3

∑
n=1,2,4

v(n), (3.18)

and βj = 1√
3
. Due to the nature of our constraints, νi will be non-negative. Each half-space

corresponds to one constraint.

In the increment step, we update one component s(k) of s, corresponding to a link flow

pair (i(k), j(k)), f(k). There are two half-space constraints, Hv and Hw, corresponding to links

connected to i(k) and j(k). If the point after update violates both constraints, projection is

done repeatedly, first on Hv and then on Hw, and so on. It can be shown [96, Theorem 13.7]

that this iterative process converges to the projection of the point onto Hv ∩Hw. If a single

hyperplane is violated, one step of projection suffices.

42

We will now obtain the analytical expressions for projecting a point onto a hyperplane. Let

Hv be defined by

〈s,νv〉 ≤ βv.

Let the point s
′

be such that β∗v , 〈s
′
,νv〉 > βv. Hence it lies outside S. Let us define

s
′′

= s
′ − (β∗v − βv)νv. (3.19)

Observe that s
′′

is the orthogonal projection of s
′

onto Hv, since 〈s′′ ,νv〉 = βv. Since s
′ − s

′′
=

(β∗v−βv)νv, and νv is normal to the plane boundary of Hv, the projection step projects the point

perpendicularly onto Hv. We show below that the projection does not break any additional

constraints.

Proposition 3.1 If 〈s′ ,νw〉 ≤ βw, then 〈s′′ ,νw〉 ≤ βw.

Proof:

〈s′′ ,νw〉 = 〈s′ ,νw〉 − (β∗v − βv)〈νv,νw〉.

Since νw and νv are non-negative, and β∗v > βv, we have (β∗v−βv)〈νv,νw〉 ≥ 0, and consequently,

〈s′′ ,νw〉 ≤ βw. 2

Hence, if a point breaks exactly one hyperplane constraint, the projection step projects the

point back on S.

Consider an example. If the interference constraint is,

s1 + s2 + s4 ≤ 1, (3.20)

the projection step (3.19) is equivalent to,

s1 = s1 −
s− 1

3
, s2 = s2 −

s− 1

3
, s4 = s4 −

s− 1

3
, (3.21)

where,

s = s1 + s2 + s4. (3.22)

The above discussion may be modified for other interference scenarios by noting that in such

scenarios, the update step may break more than two interference constraints at once. In that

43

case, we must first find out the closest hyperplane, or intersection of hyperplanes, and then do

the projection.

3.3.3 Convergence

Let us define

f(s) :=
∑
k∈K

fk(s), f ∗ := max
s∈S

∑
k∈K

fk(s).

We have the following theorem for the convergence of the distributed algorithm.

Theorem 3.1 If maxi,j,c θ
cxciµij ≤ C2, the algorithm defined by equation (3.15) results in a

sequence of points {sn} such that

lim
j→∞

sup f(sj) ≥ f ∗ − C3,

where C3 =
αβ|K|2C2

2

2
with β = 4 + 1

|K| .

Proof: See [8]. 2

The time taken by the optimization to converge ε close to the optimum is of the order of 1
ε
. It

is also inversely proportional to the step size α. We describe the algorithm below.

3.3.4 Algorithm Description

The algorithm proceeds in review cycles. At every slot t that is the beginning of a review cycle,

the nodes calculate the number of slots till the next review slot by

Trev = t+ a1 log(1 + a2

∑
i,f

Qf
i (t)),

where a1 and a2 are constants. At the beginning of a review cycle, the nodes calculate the

variables ζcij for all i, j and f , and use these till the end of the review cycle. We will now

describe how the ζcij variables are calculated at each node.

The vector s is initialized to all ones. The calculation proceeds cyclically. The node which

has the flow corresponding to the first component of the vector s will do the update

s(1) = s(1) + αw(1)µ(1). (3.23)

Here w(1) = θc(1)x
c(1)
i(1) , with θ = 1 if the QoS constraint of flow c(1) was satisfied in the previous

review cycle; otherwise, it is set to be equal to a value θ̂. The node then calculates the inner

44

products

β∗1 , 〈s,ν1〉, β∗2 , 〈s,ν2〉

where ν l,ν2, correspond to the two interference constraints that the update step may break.

If one of these constraints is broken, the update can be projected back in a single step. If both

are violated, we will have to go for the iterative projection method. For projection on a plane

characterized by 〈s,νi〉 = βi, the node calculates βex =
β∗i −βi
Nv

where Nv is the number of links

in that interference set. The node communicates this value to all links in its interference set.

All these nodes, as well as the current node, update their values as

s(k) = s(k)− βex.

This is the projection step. Once the required number of projections is over, the node then

passes its s(1) to the node which has the next component of the vector s, and that node updates

its value of s(1). The next node now repeats the update and projection steps, and passes its

update to its neighbour. This process is repeated cyclically, i.e, we repeat step (3.23) with 1

replaced by 2, and then by 3 and so on, across the nodes till a predetermined stopping time is

reached. At the end of the stopping time, we set all the negative components of s to zero. For

each interference set I, we check its constraint

〈s,ν〉 ≤ β.

If not, we apply the update

s(k) =
s(k)

〈s,ν〉
, k ∈ I.

This will ensure compliance with the constraints. The complete algorithm is given below, as

Algorithm 3, which uses in turn, Algorithms 4, 5 and 6. The last algorithm creates the schedule

by scheduling flows on a link for a fraction of time equal to the corresponding s(k).

45

Algorithm 3 Algorithm Q-Flo
1: Trev = 0, Tprev = 0.

2: while t ≥ 0 do

3: if t = Trev then

4: obtain variables sfij(Trev) using Algorithm 4

5: Tprev ← Trev

6: Trev ← Trev + a1 log(1 + a2

∑
i,cQ

f
i (Trev))

7: Create sched(i, j, f, t) from t = Tprev to t = Trev − 1 using Algorithm 6

8: end if

9: for all i, j, f do

10: if Qf
i (t) > 0 and sched(i, j, f, t) = 1 then schedule flow c across link (i, j)

11: end if

12: end for

13: end while

Algorithm 4 Algorithm at node level

1: Stopping time Ts, t
′
= 0, sfij(Trev) = 0 for all i, j, f

2: while t
′
< Ts do

3: k = t
′|K|+ 1, (i, j, c)← (i(k), j(k), c(k))

4: If QoS criterion of c satisfied, θc ← 2; else θc ← 1
5: w ← θcQc

i(Trev), µ(k)← µij, s
c
ij ← scij + αwµ(k)

6: Project scij ← ΠS(s
c
ij) using Algorithm 5

7: t
′ ← t

′
+ 1

8: end while
9: scij ← max(scij, 0)

10: If s :=
∑

j,c s
c
ij +

∑
j,c s

c
ji > 1, scij ←

scij
s

11: scij(Trev)← scij

46

Algorithm 5 Algorithm for Projection

1: Link interference constraints 〈s,ν1〉 ≤ β1, 〈s,ν2〉 ≤ β2

2: Calculate β∗1 , 〈s,ν1〉, β∗2 , 〈s,ν2〉
3: if β∗i > βi then and β∗j < βj

4: βex =
β∗i −βi
Ni+1

, Ni = number of interferers.

5: For all interferers and current link, update βcij − βex.
6: end if

7: if β∗1 > β1 and β∗2 > β2 then

8: Repeat steps 4 to 6 and 8 to 11 N rep times

9: end if

Algorithm 6 Algorithm for Schedule Creation

1: Initialize sched(i, j, f, t) = 0 ∀i, j, f, t
2: for k ∈ {1, . . . , |V |} do
3: Obtain sched(i, j, c, t) for i ≤ k − 1
4: Obtain sckj(Trev) for all j, c
5: Set of links that interfere with node k =: Nk

6: for j ∈ Nk, c ∈ F, t ∈ [Tprev, Trev] do
7: if

∑
i≤k−1 sched(i, j, c, t) = 0 and

∑
i∈Nj sched(j, i, c, t) = 0 and∑t

to=Tprev
sched(k, j, c, to) < sckj(Trev − Tprev) then

8: sched(k, j, c, t) = 1
9: end if
10: end for
11: end for

3.4 Simulation Results

We consider a 10 node network, with connectivity as depicted in Fig. 3.6, on a unit area, and

Rayleigh distributed channel gains with parameters proportional to the inverse of the square of

the distance between the nodes. The source-destination pairs are from node 0 to node 9, node

1 to node 7, node 5 to node 7, node 2 to node 8 and node 4 to node 9 with fixed routes being

0→ 1→ 3→ 7→ 9, 0→ 4→ 9 and 0→ 2→ 6→ 8→ 9 for the first flow, 1→ 3→ 7 for the

second, 5 → 7 for the third, 2 → 6 → 8 for the fourth and 4 → 9 for the last. A packet is of

size one bit. Nodes transmit with unit power. We first study the sensitivity of the algorithm

to the number of iterations of the distributed algorithm. We fix α = 0.0001, and the arrival

process is Poisson with rate 3.3 corresponding to the flows from nodes 0 to 9, 1 to 7, 2 to 8,

47

9
8

6
7

35

1

0

4

2

Figure 3.6: Sample Network

0 5 10 15 20

0

200

400

600

Iterations

M
ea

n
D

el
ay

(s
lo

ts
)

Flow to node 7
Flow to node 8
Flow to node 9

Figure 3.7: Number of Iterations versus Mean Delay

48

4 to 9, and 5 to 7 respectively. The simulation runs for 105 slots. The constants a1 and a2 in

Algorithm 1 are set to 1.

In Fig. 3.7 we plot the sensitivity of mean delay of three flows in the network to the number

of iterations of the distributed algorithm. One iteration is equivalent to the completion of

the update and project step at all the nodes. By Little’s Law, since mean delay is directly

proportional to mean queue length, it is evident from Fig 3.7 that as the number of distributed

iterations increases, the system has a lower mean queue length. This can be attributed to

the fact that as the number of iterations of the distributed optimization increase, we come

closer to the actual optimal value of the control parameters. From the simulations, around 5

rounds of iterations seem to be sufficient, and there is no major improvement in mean delay

after that. There is a marginal increase in the delay when the iterations increase to around

15. This is probably owing to the error accumulation as a result of the finite truncation of the

iterative steps. Another parameter of interest is the number of rounds of iterative projection,

N rep. From simulations, it seems that 2 to 4 rounds are sufficient, since average delays (and

consequently average queue lengths) seem to stabilize after these many rounds of iterations.

We consider the case where we are trying to provide end-to-end mean delay guarantees to

two flows: those destined to nodes 7 and 8 (Table 3.1), with flow 9 receiving no delay guarantee.

The arrival rate is 3.3 packets/slot for all arrivals. We study two cases, with θ̂ equal to 6 and 7.

Using a higher weight θ̂, we are able to give tighter delay guarantees. Also, we see that as the

delay constraint becomes tighter, the delay of the non QoS flow decreases. This is because while

a given priority weight θf reserves resources for a QoS flow, if the delay required is smaller, the

flow will have a smaller mean queue length, which will result in higher weight being given to

non QoS flows in review periods where the delay criterion is satisfied, since the optimization

function (3.6) is proportional to the queue length. Consequently, giving higher weights θ̂ to

QoS flows does not negatively impact the non QoS flows as would have been expected. Here

Ts = 8 and N rep = 10.

In Table 3.2, we demonstrate how to provide hard delay guarantee for flow 7 and mean delay

guarantee for flow 8. Flow 9 receives no delay guarantee. The weights θ̂ for flows 7 and 8

are 2 and 1.5. Note that these weights are lower than those used in Table 3.1, and hence, the

reduction possible in the mean delay of flow 8 is lower in this case. For flow 7, the packet

is dropped at the destination if its deadline is not met. We have set a target of 2% for such

packets. We see that packets of flow 7 meet this target for the different deadlines fixed. The

mean delay requirements of flow 8 are also met.

49

Table 3.1: Two Flows with mean delay requirement
Mean Delay(slots)

Flow to node 7 Flow to node 8 Flow to node 9
Target Achieved Target Achieved Delay Delay
Mean
Delay

with
θ̂ = 6

with
θ̂ = 7

Mean
Delay

with
θ̂ = 6

with
θ̂ = 7

with
θ̂ = 6

with
θ̂ = 7

50 51 51 30 32 33 318 275
40 40 40 25 26 28 253 196
30 32 30 20 22 21 172 165
25 30 26 15 18 15 145 147

Table 3.2: One mean delay and one hard deadline
Flow to node 7 Flow to node 8 Flow to

node 9
Hard
Delay Tar-
get(slots),
Drop Ratio
Target

Drop Ratio
Achieved

Mean De-
lay Target
(slots)

Mean
Delay
Achieved
(slots)

Mean De-
lay (slots)

180,2% 2% 50 51 136
180,2% 2% 40 43 100
180,2% 2% 35 36 89
160,2% 2% 45 45 88
140,2% 2% 30 33 91
120,2% 2% 35 37 94

3.5 Throughput Optimal Algorithm

While the algorithm proposed in (3.6)-(3.8) has good performance in terms of mean delay and

hard deadline QoS, it does not seem possible to show that it is throughput optimal. Hence,

we propose another algorithm, closely related to the optimization (3.6)-(3.8). We call it Queue

Weighted Discrete Review (QWDR). Consider the following optimization to be solved at the

beginning of every review period, Ti.

max
∑
i,j,f

α(Qf (Ti), Q
f
)Qf

ij(Ti)ζ
f
ijµij, (3.24)

s.t 0 ≤ ζij :=
∑
f∈F

ζfij ≤ 1 ∀ij, (3.25)

0 ≤ ζij + ζkl ≤ 1, ∀(i, j), (k, l) ∈ Im,∀m, (3.26)

50

where Qf
ij = max(Qf

i −Q
f
j , 0), Qf (t) =

∑
iQ

f
i (t). This optimization is done assuming Qf

ij > 0

for at least one link flow pair (i, j), f . If all Qf
ij are zero, we define the solution to be ζfij = 0

for all i, j, f . The first constraint corresponds to the fact that flows cannot simultaneously

be scheduled on a link, and the second constraint corresponds to interference constraints. In

(3.24), we optimize the sum of rates weighted by the function α as well as the queue lengths.

More weight may be given to flows with larger backlogs, while the α function captures the delay

requirement of the flow. These are chosen such that flows requiring a lower mean delay would

have a higher weight compared to flows needing a higher mean delay. Also, flows whose mean

delay requirements are not met should get priority over flows whose requirements have been

met. The weights α therefore are functions of the state, and Q
f

denotes a desired value for the

queue length of flow f . We use the function

α(x, x) = 1 +
a1

1 + exp(−a2(x− x))
. (3.27)

Thus α is close to 1 + a1 when x is larger than x, and reduces to 1 as x reduces. Thus, delays

which are above certain thresholds obtain higher weights in the optimization function. We seek

to regulate the queue lengths using α with a careful selection of Q
f
, and thereby control the

delays. For any flow, the Q
f

are chosen in the following manner. If the required end-to-end

mean delay of the flow with arrival rate λ is D, we choose Q
f

= λD. In some sense, we are

taking the queue length equivalent to the required delay using Little’s Law and using it as a

threshold that determines the scheduling process. Note that we may also suppress the x̄ for

convenience, and write α(x, x̄) as α(x), where necessary.

The proposed optimization differs from (3.6) in that we have replaced Qf
i by (Qf

i − Q
f
j)

+.

Further, instead of the discontinuous function θ, we have a continuous function α. Note that

the distributed implementation does not change in implementation, but only in function value.

3.5.1 An Alternate Representation

We will now rewrite the optimization (3.24)-(3.26) in a different manner to simplify the expo-

sition. Let us consider all non negative vectors (µ̂fij)(i,j)∈E,f∈F which satisfy,∑
f∈F

µ̂fij ≤ µij, ∀(i, j) ∈ E. (3.28)

51

This represents a feasible allocation to different flows across the link (i, j). Observe that this

new function µ̂ is a mapping,

µ̂fij = µ̂fij(H(t), I), (3.29)

where H(t) is the current channel state, and I is a feasible schedule belonging to S. Using this

notation, the optimization (3.24)-(3.26) may be rewritten as,

max
I∈S

∑
i,j,f

α(Qf (Ti), Q
f
)Qf

ij(Ti)µ̂
f
ij(H(Ti), I). (3.30)

3.6 Capacity Region and Rate Region

The capacity region for this network model is defined similar to what was done in the previous

chapter, but with one modification. We define the rate vector at time t as,

µ(t) = µ(H(t), I), (3.31)

where H(t) is the channel state at time t, and I is a schedule. Hence, we define,

Mh = {µ(h, I) : i ∈ S}, (3.32)

where S is the set of all feasible schedules. Let Mh denote the convex hull of Mh. Then we

define,

M =
∑
h∈H

γhMh, (3.33)

and define Λ as follows.

Definition 3.1 The capacity region, Λ, is the set of all arrival rate vectors λ for which there

exists a vector $ = [$f
ij](i,j)∈E,f∈F which satisfies,

$f
ij ≥ 0, ∀i, j, f (3.34)

$f
ii = 0, ∀i, f, (3.35)

$i
ij = 0, ∀i, j, f, (3.36)

λfi ≤
∑
j

$f
ij −

∑
k

$f
ki, ∀i, f, (3.37)

52

∑
f

$f
ij ≤ mij, for some m ∈M. (3.38)

We define the rate region W as follows.

W = {[$f
ij](i,j)∈E,f∈F = $: ∃m ∈M s.t.

∑
f

$f
ij ≤ mij, ∀i, j}. (3.39)

The rate region W is the set of all feasible rate vectors, i.e, all rate vectors $ for which there

exists a schedule that can support it.

In the next section we show that the present algorithm is throughput optimal in the sense

that if there is any other algorithm that will stabilise the network for given traffic and channel

statistics, then this algorithm will. In literature there are some algorithms available, e.g.,

back pressure [71], which are throughput optimal. But, often the delays associated with these

algorithms are high and they do not ensure any QoS. We will show that we are able to provide

the required end-to-end mean delays and hard deadline constraints with the present algorithm.

However, the present algorithm has the limitation that the routing has already been fixed via

some other algorithm while back pressure has routing as part of the algorithm.

To show that our algorithm is throughput optimal, we first show that the scaled process for

our system converges to a fluid limit.

3.7 Fluid Limit

To obtain the fluid limit, we first need to define a few processes. Define,

Âfi (t) =
t∑

τ=1

Afi (τ), ∀i, f, t. (3.40)

This is the cumulative number of packets of flow f that have arrived exogenously at node i.

Denote the vector [Âfi (t)]i∈V,f∈F by Â(t). Let Eh(t) denote the number of slots till time t that

the channel state was h ∈ H. The vector [Eh(t)]h∈H will be denoted by Eh(t). Recall that

µ̂ = [µ̂ij](i,j)∈E,f∈F denotes an allocation of the rate vector µ(h, I) for h ∈ H, I ∈ S. Let GhI
µ̂ (t)

denote the cumulative number of slots till time t when channel state was h, the schedule chosen

was I and the rate allocation was the vector µ̂. It will be assumed that the possible allocations

µ̂ forms a finite set. It follows that, ∑
µ̂,I

GhI
µ̂ (t) = Eh(t). (3.41)

53

Let Ŝfij(t), R̂
f
i (t) and D̂f

i (t) be defined as,

Ŝfij(t) =
t∑

τ=1

Sfij(τ), (3.42)

R̂f
i (t) =

t∑
τ=1

Rf
i (τ), (3.43)

D̂f
i (t) =

t∑
τ=1

Df
i (τ), (3.44)

and hence,

R̂f
i (t) =

∑
k

Ŝfki(t), D̂
f
i (t) =

∑
j

Ŝfij(t). (3.45)

Using this notation, the queueing equation can be written as,

Q(t) = Q(0) + Â(t) + R̂(t)− D̂(t). (3.46)

Define the system state to be

Y (t) = (Q(t), Q̃(t), S̃(t)),

with the process Q̃(t) = Q(T) with T = sup{s ≤ t : s = Ti for some i}, representing the

queue values at the last review instant, and S̃fij(t) = Ŝfij(t)− Ŝ
f
ij(T) representing the cumulative

allocation vector from the last review instant to the current time. From the queue evolution

(3.3) and the allocation, it is clear that the system Y (t) evolves as a discrete time countable state

Markov chain, since at any time t the next state may be computed by solving the optimization

(3.24) with Q replaced by Q̃, and using the cumulative allocation process S̃ to determine how

allocation must be done in the next slot to satisfy the solution of (3.24). The associated norm

is ||Y (t)|| =
∑

i,f (Q
f
i + Q̃f

i) +
∑

i,j,f S̃
f
ij. Positive recurrence of this Markov chain would imply

stability. We will show the positive recurrence of this Markov process via its fluid limit.

Define the process Z(t) as,

Z(t) = (Â(t), E(t), G(t), D̂(t), R̂(t), Ŝ(t), S̃(t), Q(t), Q̃(t)). (3.47)

Let Z = {Z(t), t ≥ 0} and Y = {Y (t), t ≥ 0}. The process Y is a projection of Z. For the

components of the process Z(t), define the corresponding scaled (continuous time) processes

54

indexed by n, for t ≥ 0,

an(t) =
Â(bntc)

n
, (3.48)

en(t) =
E(bntc)

n
, (3.49)

gn(t) =
G(bntc)

n
, (3.50)

dn(t) =
D̂(bntc)

n
, (3.51)

rn(t) =
R̂(bntc)

n
, (3.52)

sn(t) =
Ŝ(bntc)

n
, (3.53)

s̃n(t) =
S̃(bntc)

n
, (3.54)

qn(t) =
Q(bntc)

n
, (3.55)

q̃n(t) =
Q̃(bntc)

n
. (3.56)

Thus we obtain the process,

zn(t) = (an(t), en(t), gn(t), dn(t), rn(t), sn(t), s̃n(t), qn(t), q̃n(t)). (3.57)

Let zn denote the process {zn(t), t ≥ 0}. Note that,

zn = (an, en, gn, dn, rn, sn, s̃n, qn, q̃n). (3.58)

The term fluid limit denotes the limits obtained as we scale n→∞ for this process.

We assume that the rates satisfy µij(t) ≤ µmax. This will happen since the channel gains

are assumed bounded and transmit power is fixed.

We will use the following definition.

Definition 3.2 A sequence of functions ξn is said to converge uniformly on compact sets (u.o.c)

if ξn → ξ uniformly on every compact subset of the domain.

We will also require the following theorem; for a proof see [27].

Lemma 3.1 Let ξn : [0,∞) → R be a sequence of monotonically increasing functions. Let

ξn(x)→ ξ(x) for all rational x. If ξ(x) is continuous, the convergence of ξn to ξ is u.o.c..

55

We will also use the following well known result [70]. It is stated without proof.

Lemma 3.2 (Helly’s Selection Theorem) Let ξn be a sequence of monotonically increasing

functions on R, such that 0 ≤ ξn(x) ≤ B < ∞, for all x and n. Then, there is a function ξ

and a subsequence {nk} such that,

ξ(x) = lim
nk→∞

ξnk(x). (3.59)

We obtain the following result for zn.

Theorem 3.2 Consider a sequence of scaled systems {zn, n ≥ 0} such that the initial condition

||Q(0)|| = n in the n-th system. Then, for almost every sample path ω, there exists a subsequence

nk(ω)→∞ such that, along this subsequence,

zn → z, (3.60)

where z = (a, e, g, d, r, s, s̃, q, q̃). The component functions of zn converge to the respective com-

ponent functions of z u.o.c. as well. The limiting functions are also Lipschitz continuous, and

hence almost everywhere differentiable. The limiting functions satisfy the following properties

for all t ≥ 0.

a(t) = λt, e(t) = γt, (3.61)

rfi (t) =
∑
k 6=i

sfki(t), dfi (t) =
∑
j 6=i

sfij(t), (3.62)

qfi (t) = qfi (0) + afi (t) + rfi (t)− dfi (t), (3.63)

q̇fi (t) = λfi + ṙfi (t)− ḋfi (t), (3.64)

∑
I,µ̂

ghIµ̂ (t) = eh(t), ||q(0)|| ≤ 1, (3.65)

s̃(t) = 0, q̃(t) = q(t), (3.66)

56

sfij(t) =

∫ t

0

ṡfij(τ)dτ, (3.67)

where ṡ(t) satisfies ∑
i,j,f

α(qf (t))qfij(t)ṡ
f
ij(t) = max

$∈W

∑
i,j,f

α(qf (t))qfij(t)$
f
ij, (3.68)

where the dot indicates derivative, at regular t (the points where the function is differentiable)

and W is defined by (3.39).

Proof: The Strong Law of Large Numbers (SLLN) implies

Âfi (nt)

n
=

∑nt
τ=1 A

f
i (τ)

n
= t

∑nt
τ=1A

f
i (τ)

nt
→ λt, as n→∞.

This, in conjunction with Lemma 3.1 gives the first part of (3.61). The convergence of en to γt

u.o.c. also follows from the SLLN and Lemma 3.1.

The family of functions { 1
n
Ŝfij(nt)} is a family of monotone increasing functions. Moreover,

Ŝfij(nt)

n
≤ nµmaxt

n
= µmaxt. (3.69)

Using Helly’s selection theorem (Lemma 3.2), one can obtain a convergent subsequence as

follows. Consider intervals of the form [0,m]. Let snm denote the function sm restricted to

[0,m]. Consider the family {sn1 , n ≥ 1}. This family is bounded by µmax by (3.69), and

hence, by Helly’s selection theorem, we can obtain a convergent subsequence {sn1∗, n ≥ 1}. Now

consider this subsequence of functions restricted to [0, 2], and observe that these are uniformly

bounded by 2µmax. Applying Lemma 3.2 again, we obtain a further convergent subsequence,

{sn2∗, n ≥ 1}. Proceed iteratively over m. Then, the convergent subsequence is given by the

limit,

s = lim
m→∞

smm∗. (3.70)

Thus, we obtain a subsequential limit s of sn. Along this subsequence, rn → r and dn → d

satisfying (3.62), due to (3.2) and (3.45).

Since the rates are bounded, it follows that Ŝfij(t) ≤ µmaxt. Therefore, for 0 ≤ t1 ≤ t2, we

have

Ŝfij(nt2)− Ŝfij(nt1) ≤ nµmax(t2 − t1),

57

and hence,

Ŝfij(nt2)

n
−
Ŝfij(nt1)

n
≤ µmax(t2 − t1). (3.71)

Taking the limit along the subsequence along which sn → s, we obtain,

sfij(t2)− sfij(t1) ≤ µmax(t2 − t1). (3.72)

It follows that sfij is Lipschitz continuous, and hence so is s, and consequently r and d are

Lipschitz as well. Hence, from Lemma 3.1, we obtain u.o.c. convergence for sn, rn and dn along

the chosen subsequence. Since s is Lipschitz and hence almost everywhere differentiable, (3.67)

follows.

From the queueing equation (3.46), we can see that,

Q(nt) = Q(0) + Â(nt) + R̂(nt)− D̂(nt). (3.73)

Dividing by n on both sides and taking n → ∞ along the chosen subsequence yields the

convergence,

qn → q, (3.74)

with q(t) defined by (3.63).

Since a, r and d are Lipschitz, q will also be Lipschitz, making it differentiable almost

everywhere. At points where it is differentiable, we obtain (3.64) by differentiating (3.63).

The functions GhI
ijf (t) are also a monotone family, bounded uniformly on each compact

interval. Hence, we can apply Helly’s selection theorem again, as we did in the case of sn, to

obtain a subsequence along which gn → g. As is the case of s, observe that,

1

n
(GhI

µ̂ (nt2)−GhI
µ̂ (nt1)) ≤ t2 − t1, (3.75)

for t2 > t1. This shows that g is Lipschitz continuous, and consequently along this new subse-

quence gn → g u.o.c. as well.

Before characterizing the allocation process s, it must be pointed out that we do not dis-

tinguish between the actual and the ideal allocation, since they converge to the same limit.

Ideal allocation is the allocation assigned in each review period to a flow f over a link (i, j). If

the channel gain is µij and the review period has length T̂ , the ideal allocation in that review

58

period is ζfijµijT̂ . However, the actual allocation may be slightly different, owing to roundoff

errors (since service can only be in integer bits).

Let the actual (cumulative) allocation be S̄fij(t). The actual allocation differs from the ideal

allocation due to round-off errors. At a time nt, let m = max{i : Ti ≤ nt}. Bounding possible

errors in each review period we get,

|Ŝfij(nt)− S̄
f
ij(nt)| ≤ µmaxT̂m +mµmax.

The last term follows by summing up round-off errors in review periods upto m, and observing

that in any review period T̂ , errors are of the form µij|x−bxc|, where x = ζfijT̂ . Since m ≤ nt
T

,

where T = mini<m{T̂i}, we get

1

n
|Ŝfij(nt)− S̄

f
ij(nt)| ≤ µmax

{
T̂m
n

+
t

T

}
.

Since T̂i are max(1, log(1 + k0||Q||)) and limn→∞ ||Q|| = ∞, we have limn→∞ T = ∞ and

limn→∞
T̂m
n

= 0, and hence, the fluid limits of Ŝ and S̄ are equal.

To show (3.68), observe that,

Sfij(t) =
∑
h,I,µ̂

GhI
µ̂ (t)µ̂fij(h, I). (3.76)

Hence, we have,

Sfij(nt2)− Sfij(nt1) =
∑
h,I,µ̂

(GhI
µ̂ (nt2)−GhI

ijf (nt1))µ̂fij(h, I).

Multiplying LHS and RHS by α(Q
f (nt1)
n

)
Qfij(nt1)

n
1
n
, summing over i, j, f, and taking n→∞, the

LHS becomes

∑
i,j,f

α(qf (t1))qfij(t1)[sfij(t2)− sfij(t1)], (3.77)

where qfij(t) = max(qfi (t)−qfj (t), 0) and qf (t1) = limn→∞
Qf (nt1)

n
=
∑

i q
f
i (t). The RHS becomes,

∑
i,j,f

α

(
Qf (nt1)

n

)
Qf
ij(nt1)

n

∑
h,I,µ̂

(
GhI
µ̂ (nt2)

n
−
GhI
µ̂ (nt1)

n

)
µ̂fij(h, I). (3.78)

59

The allocation satisfies

∑
i,j,f

α

(
Qf (nt

′
)

n

)
Qf
ij(nt

′
)

n
µ̂fij(h, I) = max

I

∑
i,j,f

α

(
Qf (nt

′
)

n

)
Qf
ij(nt

′
)

n
µ̂fij(h, I), (3.79)

where nt
′
was the previous review point with nt1 = nt

′
+T . Going along the subsequence along

which qn → q, we obtain,∑
i,j,f

α(qf (t
′
))qfij(t

′
)µ̂fij(h, I) = max

I

∑
i,j,f

α(qf (t
′
))qfijµ̂

f
ij(h, I). (3.80)

Along the same subsequence, (3.78) becomes,∑
i,j,f

α(qf (t1))qfij(t1)
∑
h,I,µ̂

(ghIµ̂ (t2)− ghIµ̂ (t2))µ̂fij(h, I). (3.81)

Since 0 ≤ T
n
≤ T̂

n
→ 0, we can write qfi (t1) as

qfi (t1) = lim
n→∞

Qf
i (nt1)

n
= lim

n→∞

1

n
Qf
i (n(t

′
+
T

n
)) = qfi (t

′
). (3.82)

Using this fact in combination with (3.80), we see that (3.81) becomes,∑
h,I,µ̂

(ghIijf (t2)− ghIijf (t2)) max
I

∑
î,ĵ,f̂

α(qf̂ (t1))qf̂
îĵ

(t1)µ̂f̂
îĵ

(h, I) (3.83)

Using (3.65), (3.82) and (3.61), this becomes∑
h

[eh(t2)− eh(t1)] max
I

∑
î,ĵ,f̂

α(qf̂ (t1))qf̂
îĵ

(t1)µ̂f̂
îĵ

(h, I), (3.84)

=(t2 − t1)
∑
h

γh max
I

∑
î,ĵ,f̂

α(qf̂ (t1))qf̂
îĵ

(t1)µ̂f̂
îĵ

(h, I). (3.85)

Dividing (3.77) and (3.85) by t2 − t1, equating, and taking t2 → t1, we obtain,∑
i,j,f

α(qf (t1))qfij(t1)ṡfij(t1) =
∑
h

γh max
I

∑
î,ĵ,f̂

α(qf̂ (t1))qf̂
îĵ

(t1)µ̂f̂
îĵ

(h, I). (3.86)

60

Now observe that an element $ ∈W satisfies,

$f
ij =

∑
h

γh
∑
I

νh(I)µ̂fij(h, I), (3.87)

where νh(I) is a probability distribution over S and µ̂fij(h, I) satisfies,∑
f

µ̂fij(h, I) ≤ µij(h, I), (3.88)

for a some achievable rate µ and for all h, I. Hence the RHS of (3.86) can be written as,

max
$∈W

∑
i,j,f

α(qf (t1)qfij(t1)$f
ij. (3.89)

Thus, we obtain, ∑
i,j,f

α(qf (t1))qfij(t1)ṡfij(t1) = max
$∈W

∑
i,j,f

α(qf (t1)qfij(t1)$f
ij, (3.90)

with W defined by (3.39). Thus we obtain (3.68).

To obtain the first part of (3.66), observe that

0 ≤ S̃fij(n, t) ≤ µmax
T̂

n
,

with T̂ being a review period. Taking n→∞, we see that,

s̃(t) = 0. (3.91)

The second part of (3.66) follows from (3.82). The first part of (3.65) follows by applying the

fluid scaling to (3.41). From the assumption that ||Q(0)|| = n for the n-th system, the second

part of (3.65) follows. 2

Denote the vector of all qfi (t) by q(t). We will use the following result to establish the

stability of the network.

Theorem 3.3 (Theorem 4 of [2]) Let Y be a Markov Process with ||Y (.)|| denoting its norm.

If there exist α > 0 and a time T > 0 such that for a scaled sequence of processes {Y n, n =

61

0, 1, 2, ..}, we have

lim
n→∞

supE[||Y (n, T)||] ≤ 1− α,

then the process Y is stable (positive recurrent).

Using this result, we will establish stability of the network under our algorithm and show that

it is throughput optimal.

Theorem 3.4 The policy QWDR, as defined in (3.30), stabilizes the process {Q(t), t ≥ 0} for

all arrivals in the interior of Λ.

Proof: Pick an arrival rate λ = {λfi } ∈ int(Λ). Consider the Lyapunov function,

L1(q(t)) = −
∫ ∞
t

exp(t− τ)
∑
i,f

α(qf (τ))qfi (τ)q̇fi (τ)dτ, (3.92)

where the dot indicates the derivative. This is a continuous function of q(t), with L(0) = 0.

We can write the (time) derivative,

L̇1(q(t)) =
∑
i,f

α(qf)qfi q̇
f
i =

∑
i,f

α(qf)qfi (λfi +
∑
m

ṡfmi(t)−
∑
n

ṡfin(t)). (3.93)

This follows from (3.63).

Recall the definition of Λ (3.34)-(3.38). Since λ is in the interior of Λ, there exists a non

negative vector [$f
ij](i,j)∈E,f∈F for which,

λfi + ε <
∑
j

$f
ij −

∑
k

$f
ki ∀i, f, (3.94)

and there exists m ∈M such that, ∑
f

$f
ij ≤ mij. (3.95)

Substituting this in the previous equation, we can write,

L̇1(q(t)) < −ε
∑
i,f

α(qf)qfi +∑
i,f

α(qf)qfi (
∑
n

$f
in −

∑
m

$f
mi +

∑
m

ṡfmi(t)−
∑
n

ṡfin(t)).

62

Observing that ∑
i,f

α(qf)qfi (
∑
n

$f
in −

∑
m

$f
mi) =

∑
i,j,f

α(qf)$f
ij(q

f
i − q

f
j),

and that a similar equation holds for $ replaced by ṡ, it follows that if we show∑
i,j,f

α(qf)$f
ij(q

f
i − q

f
j) ≤

∑
i,j,f

α(qf)ṡfij(q
f
i − q

f
j), (3.96)

it will imply L̇1(q(t)) < 0. We have∑
i,j,f

α(qf)$f
ij(q

f
i − q

f
j) ≤

∑
i,j,f

α(qf)$f
ijq

f
ij ≤

∑
i,j,f

α(qf)ṡfijq
f
ij,

where the first inequality follows from the fact that qfij = (qfi − q
f
j)+, and the second follows

from (3.68).

Now, if we show that ṡfij = 0 whenever qfij = 0, (3.96) will follow. To see this, assume that

at some t, ṡfij = δ1 > 0 and qfij = 0. This would mean that for large enough n, there is a time

s sufficiently close to t such that, for δ = δ1

2
,

Sfij(nt)− S
f
ij(ns) > nδ(t− s).

This implies that at a time t1 ∈ (s, t) with Qf
i (nt1) − Qf

j (nt1) ≤ 0 the queue Qf
i was served.

This would mean that the optimization resulted in a positive µfij. This cannot when all Qf
ij are

zero, since in that state, by definition, all µfij are set to zero. Hence there exists k, l,m such

that Qm
kl > 0. If µfij is added to µmkl, the value of the summand in (3.30) would only increase,

thus contradicting its optimality. It follows that ṡfij = 0 whenever qfij = 0, and hence, (3.96) is

true.

Thus, L̇1(q(t)) < −ε
∑

i,f α(qf)qfi , and hence, from (3.92) and (3.93), we see that L1(q(t)) >

0 whenever q(t) 6= 0. Fix δ1 < 1. Then, there exists T ≤ T1 = L1(q(0))
εδ1

+δ1 such that
∑

i,f q
f
i ≤ δ1.

To see this, assume otherwise, that
∑

i,f q
f
i (t) > δ1 for t ∈ [0, T1]. Now,

L1(q(t)) = L1(q(0)) +

∫ t

0

L̇1(q(τ))dτ.

63

Since q is Lipschitz, q̇ will be bounded. It is easy to see that L(q(0)) is finite. Since w(qf) ≥ 1,

L1(q(t)) ≤ L1(q(0))− εδ1t,

for t ∈ [0, T1], and by choosing t = T1, we obtain L1(q(T1)) < 0, which is a contradiction. Hence,∑
i,f q

f
i (T) ≤ δ1. Since the fluid queue is a deterministic process following the trajectory defined

by equations (3.61)-(3.68), it follows that, almost surely,

lim
n→∞

sup ||Qn(T)|| =
∑
i,j,f

q(T) ≤ δ1 < 1.

From the definition of Q, we have that

||Qn(T)|| ≤ [1 +
∑
i,f

Af,ni (T) + T
∑
i,j,f

µmax].

Since E[
∑

i,f A
f,n
i (T)] = T (

∑
i,f λ

f
i) <∞, we can use the Dominated Convergence Theorem [3]

to see that Theorem 3.3 holds for Q with α = 1− δ1. The result follows. 2

3.8 Simulation Results

For simulation we consider a fifteen node network with seven flows, with connectivity as depicted

in Fig 3.8, over a unit area. We will be trying to provide mean delay QoS for three of these

flows. The channel gains are Rayleigh distributed with parameters inversely proportional to

the square of the distance between nodes, and the arrival distribution is Poisson. The flows

are F10 : 7 → 9 → 10, F4 : 7 → 8 → 2 → 4, F11 : 1 → 2 → 4 → 11, F13 : 9 → 10 → 13,

F12 : 1 → 3 → 6 → 12, F15 : 5 → 14 → 15 and F6 : 5 → 3 → 6. The constant k0 = 0.01 in

(3.2), and in the distributed optimization, the algorithm runs 15 cycles over the set of nodes

with α = 0.0001 and the initial state is zero. The simulation runs for 105 slots, with a1 = 0.2

and a2 = 2 in (3.27). The arrival rates are 3.8 for F6, 3.74 for F10, and 2.5 for the others.

These are chosen to take the queues to the edge of the stability region, where delays are larger,

and the control of the algorithm in providing QoS will be more evident. The values are shown in

Table 3.3, with flows F10, F11 and F6 having mean delay requirements, which are translated

to λQ̄f in the w function. The delays are rounded to the nearest integer.

The first row represents delays of the flows when w = 1 for all flows, i.e., no priority is given.

In the other rows, the values in brackets are of the form (target delay, achieved delay). The

flows seem to respond very well to the target, often coming much lower than what is desired,

since the weights tend to push the queue lengths to below these threshold values. In all cases,

64

the delays can be brought down to less than 50% of their unweighed values. Another effect is

that giving QoS to one flow does not adversely affect the delay of the other flows. In fact, it

can substantially reduce the mean delays of the other flows as well. Since the algorithm uses

backpressure values, this is not surprising, and the weight function can be thought of as fine

tuning the delay behaviour of the network.

The modified algorithm, QWDR, though throughput optimal, was not able to provide hard

1

2 3

4

5

6

7

89

10

11
12

13 14

15

Figure 3.8: Sample Network

Table 3.3: Simulation for example in Fig 3.8. Three Flows with mean delay requirements,
network of fifteen nodes. Entries of the form (a,b) indicate delay target a, delay achieved b.

Mean Delay(slots) for each flow
F10 F4 F11 F13 F12 F15 F6

318 68 499 233 642 25 111
(200,188) 61 (350,304) 163 403 23 (70,70)
(150,96) 60 (300,265) 85 362 22 (60,65)
(150,67) 56 (150,148) 61 235 22 (45,55)
(200,136) 56 (130,134) 119 220 22 (50,55)

deadline guarantees. This suggests that the modified weight function α, is not sufficient to

provide the necessary priority.

3.9 Conclusion

In this chapter, we have developed a distributed algorithm to provide Quality-of-Service require-

ments in terms of end-to-end mean delay guarantees and hard deadline guarantees to flows in a

multihop wireless network. The algorithm uses discrete review to solve an optimization problem

at review instants, and uses a control policy based on the solution of an optimization problem.

The algorithm optimizes, in a distributed fashion, a function with distributed weights given to

pseudo draining times, with the weights varied dynamically to provide priority for flows in the

network, and consequently, meeting their respective delay constraints. We use iterative gradient

65

ascent and distributed iterative projection methods in order to compute the optimal point in a

distributed manner. By means of simulations we establish the efficacy of the algorithm in pro-

viding the required delay demands. We study the convergence properties of the algorithm and

also see via simulations that the algorithm converges quickly. We also demonstrate throughput

optimality of a modified version algorithm by a theoretical analysis. This used the technique

of fluid limits. The modified algorithm also meets mean delay constraints. Surprisingly, the

algorithm not only reduces the mean delays of the targeted flows, it reduces mean delays of

other flows as well. While a smoother weight function α is necessary for the throughput optimal

algorithm, it is not sufficient to provide for hard delay guarantees.

66

Chapter 4

Diffusion Approximation and

Convergence of Stationary

Distributions

In the previous chapter we developed a new scheduling algorithm which provides QoS and is

also thoughput optimal. The QoS was confirmed via simulations. It is of interest to study

its performance theoretically. In particular it will be very useful to compute the end-to-end

mean delay and more generally the distribution under stationarity. However, it is intractable

to compute these quantities for such a complicated system. Thus, we consider approximations.

In this chapter, we obtain a diffusion approximation of the network in the heavy traffic

regime. This is done by taking the limit of scaled system processes, where the scaling corre-

sponds to the Functional Central Limit Theorem. The limiting process is a reflected Brownian

motion with drift. Furthermore, we also show that the stationary distribution of the scaled

process of the network converges to that of the Brownian limit, providing an approximation to

the stationary distribution under heavy traffic. This will provide approximations of stationary

end-to-end mean delay and distribution even under moderately heavy load, which are of main

interest in practice, because under low load, the QoS of different flows will anyway generally

be met. Finally simulations further verify our claims.

4.1 System Model

We continue with the system model that was used in the previous chapter. We consider a

multihop wireless network (Fig. 4.1). The network is modelled as a connected directed graph

G = (V,E) with V = {1, 2, . . . , N} being the set of nodes and E ⊆ V× V being the set of links.

67

1 2

3 4 5

6 7

8

Q17
1 (t)

A17
1 (t)

H12(t)

Figure 4.1: A simplified depiction of a Wireless Multihop Network. The flow 17 corresponds to
the source 1 and destination 7.

We consider a discrete time system, with time slots of length 1. The links are directed, with

link (i, j) from node i to node j having a time varying channel gain Hij(t) at time t (it stays

constant over one time slot). The channel gain vector, H(t) = (Hij(t))(i,j)∈E, evolves as an

independent and identically distributed (i.i.d.) process across slots with distribution γ over a

finite set H. Let Eh(t) denote the cumulative number of slots in [0, t] when the channel state

was h ∈ H. The vector (Eh(t))h∈H is denoted by E(t). We assume that the links are sorted

into M interference sets I1, I2, . . . , IM . At any time, only one link from an interference set can

be active. A link may belong to multiple interference sets.

There are multiple flows in the network, each corresponding to a source-destination pair.

The set of all flows is denoted by F. We assume that every flow has a fixed path to follow

from source to destination. Denote the set of links on the path corresponding to flow f by Rf .

Denote the source node of flow f by src(f), and destination by des(f). At any node i = src(f),

Afi (t) denotes the process of exogenous arrival of packets corresponding to flow f . The packets

arrive as an i.i.d sequence across slots, with mean arrival rate λfi and variance σfi . Let λ denote

the vector of all λfi . Define the cumulative arrival process,

Â(t) =
t∑

τ=1

A(τ). (4.1)

At each node there are queues, with Qf
i (t) denoting the queue length at node i corresponding

to flow f ∈ F at time t. Define the set of all link-flow pairs to be K = {((i, j), f) : (i, j) ∈ E, f ∈
F}. A schedule is a mapping from K to [0, 1]. The value of the schedule vector for link-flow

element k corresponds to the fraction of time that flow is scheduled over that link. The set

of feasible schedules is denoted by S. The elements of S are determined by the interference

constraints of the network. For a given channel state h ∈ H and schedule I ∈ S, there is a rate

68

vector, µ = (µij)(i,j)∈E defined as,

µij = µij(h, I). (4.2)

This will be an achievable rate function. Corresponding to any rate vector there will be alloca-

tion vectors, µ̂ = [µ̂fij](i,j)∈E,f∈F. These are non negative vectors that satisfy,∑
f∈F

µ̂fij ≤ µij, (4.3)

for some rate vector µ(h, I). We also assume that µfii = 0 for all i, f and µfi,j = 0 for all

i = des(f). Also, µfij = 0 if (i, j) /∈ Rf . Define,

Mh = {µ(h, I) : I ∈ S} (4.4)

The number of bits of flow f transmitted from node i to node j in time slot t is denoted by

Sfij(t). The vector [Sfij(t)](i,j)∈E,f∈F is denoted by S(t). Denote by Ŝ(t) the cumulative process∑t
τ=1 S(τ).

For a queue Qf
i with i 6= f , we have the queue evolution given by,

Qf
i (t) = Qf

i (0) + Âfi (t) + R̂f
i (t)− D̂f

i (t), (4.5)

where Rf
i (t) is the cumulative arrival of packets by routing (i.e., arrivals from other nodes), and

Df
i (t) is the cumulative departure of packets, given by,

Rf
i (t) =

∑
k 6=i

Ŝfki(t), and Df
i (t) =

∑
j 6=i

Ŝfij(t), (4.6)

and Qf
i (0) is the initial queue length, at time 0. The vector of queues at time t is denoted by

Q(t). Similarly we have the vectors Â(t), R̂(t), D̂(t) and Ŝ(t).

We want to develop scheduling policies such that the different flows obtain their end-to-

end mean delay deadline guarantees. Define Qf
ij = max(Qf

i − Q
f
j , 0), Qf (t) =

∑
iQ

f
i (t). Our

network control policy is the same as in Chapter 3. The only difference is that unlike in Chapter

3, now the control is exercised after each slot, i.e., the discrete review interval is one slot. We

obtain the optimal allocation µ̄(t) = µ̂(H(t), I∗(t)), where,

I∗(t) = argI∈S max
∑
i,j,f

α(Qf (t), Q
f
)Qf

ij(t)µ̂
f
ij(H(t), I), (4.7)

69

assuming Qf
ij > 0 for at least one link flow pair (i, j), f . If all Qf

ij are zero, we define the

solution to be µ̄(t) = 0. The number of bits of flow f transmitted over link (i, j) is given by,

S̄fij(t) = min(Qf
i (t),

∑
j

µ̄fij(t)). (4.8)

In (4.7), we optimize a weighted sum of rates, with more weight given to flows with larger

backlogs, with α capturing the delay requirement of the flow. The weights α are functions of

Qf (t), and Q
f

denotes a desired value for the queue length of flow f , which is determined by

the end-to-end mean delay requirement of flow f . We use,

α(x, x) = 1 +
a1

1 + exp(−a2(x− x))
. (4.9)

Thus, flows requiring a lower mean delay would have a higher weight compared to flows needing

a higher mean delay. Flows whose mean delay requirements are not met should get priority

over the other flows.The Q
f

are chosen, using Little’s Law, as Q
f

= λfτ fdelay, where τ fdelay is the

target end to end mean delay and λf is the arrival rate of flow f . Note that we will often use

α(x) instead of α(x, x̄) for simplicity of notation.

Let GhI
µ̂ (t) be the number of slots till time t, in which channel state was h, the schedule

was I and the rate function chosen was µ̂. Denote the vector of all GhI
ijf (t) by G(t). Define the

process,

Z = (A,E,G,D,R, S,Q), (4.10)

where we have A = {A(t), t ≥ 0} (and likewise for the other processes). This process describes

the evolution of the system. The state of the system at time t is Q(t), which takes values in a

state space Q. The capacity region Λ and rate region W of the network is defined as in Chapter

3, (3.34)-(3.38).

4.2 Fluid Limit and Stability

We first establish the throughput optimality of the system under the control policy given by

(4.7). Towards this, we first define the fluid scaling and fluid limit of the system as in Chapter

3. For the process Z(t), define the sequence of scaled processes, given by,

zn(t) =
Z(bntc)

n
, (4.11)

70

where n ∈ N. This is called fluid scaling of the process Z. Denote by zn the process {zn(t), t ≥
0}. Clearly,

z = (a, e, g, d, r, s, q). (4.12)

Then, we have the following result.

Lemma 4.1 1 Let N be a sequence of positive integers increasing to infinity. Then, there exists

a subsequence N1 ⊆ N, such that, as n→∞ along N1, we have, almost surely (a.s.),

zn → z, (4.13)

where z = (a, e, g, d, r, s, q), is called a fluid limit, and the convergence of the processes is u.o.c.

The limiting functions are also Lipschitz continuous, and hence almost everywhere differentiable.

The points t at which these are differentiable are called regular points. In addition, the limiting

functions satisfy,

a(t) = λt, e(t) = γt, (4.14)

rfi (t) =
∑
j

sfji(t), dfi (t) =
∑
j

sfij(t), (4.15)

q(t) = q(0) + a(t) + r(t)− d(t), (4.16)

q̇(t) = λ+ ṙ(t)− ḋ(t), (4.17)

∑
I,µ̂

ghIµ̂ (t) = eh(t), sfij(t) =

∫ t

0

ṡfij(τ)dτ, (4.18)

where ṡ(t) satisfies ∑
i,j,f

α(qf (t))qfij(t)ṡ
f
ij(t) = max

$∈W

∑
i,j,f

α(qf (t))qfij(t)$
f
ij, (4.19)

and the dot indicates derivative, at regular t.

71

The proof of this lemma is similar to the proof of Theorem 3.2. Note that the fluid limit

processes obtained here are the same as those obtained in Theorem 3.2. Thus, both systems

have the same evolution as far as the fluid queue is concerned. Since the proof is quite close to

that of Theorem 3.2, we skip it.

Similarly, we also obtain the following stability result.

Lemma 4.2 The policy given in (4.7) stabilizes the process {Q(t), t ≥ 0} for all arrivals in the

interior of Λ.

Again, the proof is the same as for Theorem 3.4. Since the fluid queue has the same evolution

in both cases, we can use the same Lyapunov function, given by,

L1(q(t)) = −
∫ ∞
t

exp(t− τ)
∑
i,f

α(qf (τ))qfi (τ)q̇fi (τ)dτ. (4.20)

This function is positive, and has negative drift when λ ∈ int(Λ).

4.2.1 Draining Time

An important parameter that we obtain from the fluid limit is the draining time τdrain, defined

as the time t by which the fluid queue q(t) has norm zero. We have the following result, which

relates the draining time to the time T obtained in the proof of Lemma 3.4.

Lemma 4.3 For the fluid limit z defined by Lemma 4.1,

τdrain ≤
T

1− δ1

. (4.21)

Proof: The proof is a consequence of the scaling properties of the fluid limit functions.

Observe that, for any positive δ, as n→∞ along N1,

q(t) = lim
n→∞

Q(bδntc)
δn

=
1

δ
q(δt). (4.22)

Hence, a fluid limit path q(t) is equivalent to a fluid path q(δt)
δ

. Let us define a fluid path

q
′
(t) = q(t+ T) for t ≥ 0. This is a fluid path with initial condition,

|q′(0)| ≤ δ1. (4.23)

72

Observe that, by (4.22),

q
′
(t) = q(t+ T) =

1

δ−1
1

q(δ−1
1 (t+ T)). (4.24)

If T1 is the time for the path q
′
(t) to reach the level (δ1)2, we have,

|q(δ−1
1 (T1 + T))| = δ1. (4.25)

However, |q(t)| reaches δ1 in time T . Hence |q(δ−1
1 t)| reaches δ1 in time t = δ1T . Hence,

T1 ≤ δ1T . Continuing in this line, we can bound the time to reach δ1, (δ2)2, and so on by T1,

T2, etc., where

Tn ≤ (δ1)nT. (4.26)

Hence, the time for the queue to reach level zero is bounded by,

T + δ1T + (δ1)2T + · · · = T

1− δ1

. (4.27)

2

Studying the fluid limit gives us insights into the stability properties of the system. However, it

only proves the existence of a stationary distribution. In order to predict the behaviour of the

system, one needs the stationary distribution, or some approximation to the same. However,

explicitly computing the stationary distribution for our system is not feasible. Thus we define

the heavy traffic regime, and the associated diffusion scaling, below. We will also show that

the stationary distribution of our system process converges to that of the limiting Brownian

network. This will provide us an approximation of the stationary distribution of ours system

under heavy traffic, the scenario of most practical interest.

4.3 Diffusion Scaling and Heavy Traffic Limit

Now we consider a new sequence of scaled systems, Zn. The n-th process is the above system

but with arrival rate vector λn and standard deviation σn. The λn are chosen such that, as

n→∞, λn → λ∗, and,

lim
n→∞

n〈ψ, λn − λ∗〉 = b∗ ∈ R, (4.28)

73

where λ∗ is a point on the boundary of Λ, and ψ denotes the outer normal vector to Λ at the

point λ∗. We will also assume that λ∗ falls in the relative interior of one of the faces of the

boundary of Λ (This is the resource pooling condition). For this sequence of systems, we define

the diffusion scaling, given by,

ẑn(t) =
Zn(bn2tc)

n
. (4.29)

Let ẑn denote the process (ẑn(t), t ≥ 0). As before, we have,

ẑn = (ân, ên, ĝn, d̂n, r̂n, ŝn, q̂n).

Define the system workload W n(t) in the direction ψ,

W n(t) = 〈ψ,Qn(t)〉, (4.30)

and,

ŵn(t) =
W (bn2tc)

n
.

Denote ŵn = {ŵn(t), t ≥ 0}. We will use D [0,∞) to denote the space of all functions from

[0,∞) to R, that are right continuous with left hand limits (RCLL, also called cadlag).

Define an invariant point to be a vector φ that satisfies, for some k > 0,

α(φ)φ = kψ, (4.31)

where α(φ) is the vector of all α(φj), with α defined in (4.9). Assume that,

σn → σ, (4.32)

as n→∞. Assume that the arrival process An(t) satisfies, for all i, f ,

lim
x→∞

sup
n≥1

E[(Af,ni (1))21{Af,ni (1)≥x}] = 0. (4.33)

This is a sufficient condition for Donsker’s Theorem to hold for the arrival process [13]. A

74

sufficient condition for the above condition is,

sup
n≥1

E[Af,ni (1)]2+δ <∞, (4.34)

for some δ > 0. Under these assumptions, we have the following result, which characterizes the

weak convergence of the diffusion scaled processes.

Theorem 4.1 Consider {ẑn, n ∈ N}, under heavy traffic scaling satisfying (4.28),and N a

sequence of positive integers n increasing to infinity. Assume that the arrival process satisfies

(4.33). Further, assume that,

q̂n(0)
L→ cφ, (4.35)

where c is a non negative real number. Then, the sequence {ŵn, n ∈ N} converges weakly to a

reflected Brownian motion ŵ as n→∞ in D [0,∞). Further, {q̂n, n ∈ N} converges weakly to

φŵ.

The proof of this Theorem proceeds in the following manner. The process ŵn is decomposed

into two parts. The first of these parts converges to a Brownian motion. The second converges

to the unique regulator corresponding to the Brownian motion. Together, they add up and

form a reflected Brownian motion. First, we decompose ŵn.

Towards this, first we define, Wh to be,

Wh = {[$f
ij](i,j)∈E,f∈F = $: ∃m ∈Mh s.t.

∑
f

$f
ij ≤ mij, ∀i, j}. (4.36)

For a vector $ = [$f
ij](i,j)∈E,f∈F, define the transformation ζ by,

ζfi ($) =
∑
j

$f
ij −

∑
k

$f
ki. (4.37)

Applied to a rate vector, this shows the net outflow by routing. Define the set,

ζ(Wh) = {ζ($) : $ ∈Mh}. (4.38)

Let us denote the maximum allocation in the direction ψ, when the channel is in state h, by

ρh = max
ρ∈ζ(Wh)

〈ψ, ρ〉, h ∈ H. (4.39)

75

Define the vectors,

ρ = [ρh]h∈H, (4.40)

ρ̂ = [(ρh)
2]h∈H. (4.41)

Define the random variables,

Xµ(t) = µ̃H(t), t ≥ 1.

The random variables {Xµ(t), t ≥ 0} are i.i.d, with mean and variance given by,

ν̂ = 〈ρ, γ〉, σ̂2 = E[(Xµ(1)− ν̂)2] = 〈ρ̂, γ〉 − ν̂2 ≥ 0.

Define the cumulative process,

X(t) =
t∑

k=1

Xµ(k). (4.42)

This is the cumulative maximum possible service in the direction ψ. We can write,

U(t) = W (0) + 〈ψ,A(t)〉 −X(t), (4.43)

V (t) = X(t) + 〈ψ,R(t)〉 − 〈ψ,D(t)〉, (4.44)

and, consequently, we can decompose the workload as,

W (t) = U(t) + V (t). (4.45)

Consequently,

W n(n2t) = Un(n2t) + V n(n2t). (4.46)

Define,

ûn(t) =
Un(bn2tc)

n
, v̂n(t) =

V n(bn2tc)
n

.

76

Thus we have,

ŵn(t) = ûn(t) + v̂n(t). (4.47)

Let us denote ŵn = {ŵn(t), t ≥ 0}, ûn = {ûn(t), t ≥ 0} and v̂n = {v̂n(t), t ≥ 0}.
Thus, we have decomposed the ŵn process. Now we look at convergence of the constituent

processes.

4.3.1 Convergence of ûn

The following theorem tells us about the convergence of the ûn component.

Lemma 4.4 Assuming that the initial condition converges weakly to an invariant point, i.e,

ŵn(0)
L→ ŵ(0), (4.48)

as n→∞ along N, where α(ŵ(0))ŵ(0) = ψ. Then, it follows that,

ûn
L→ û,

in D [0,∞) as n→∞ along N, where û = (û(t), t ≥ 0) is a Brownian motion with drift, given

by,

û(t) = ŵ(0) + b∗t+ σB(t), (4.49)

where B(t) is a standard Brownian motion, σ2 =
∑

i,f (σ
f
i)2 + σ̂2, and b∗ is given by (4.28).

Proof: We can write ûn as,

ûn(t) =
Un(n2t)

n

= ŵn(0) + 〈ψ, ân(t)〉 − x̂n(t),

= ŵn(0) + 〈ψ, ân(t)− λnnt〉 − (x̂n(t)− ν̂nt) + (〈ψ, λn〉 − ν̂)nt.

Since ν̂ = 〈ρ, γ〉, we can see that,

ν̂ =
∑
h∈H

γhρh =
∑
h∈H

γh max
ρ∈ζ(Mh)

〈ψ, ρ〉 = max
ρ̃∈

∑
h γhζ(Mh)

〈ψ, ρ̃〉 = 〈ψ, λ∗〉, (4.50)

77

where the last equality holds since λ∗ is at the boundary of the capacity region and ρ̃ ∈∑
h γhζ(Mh) represents service rate in the system,whose inner product with ψ is maximized

when it takes the value λ∗. From assumption (4.28), it follows that,

(〈ψ, λn〉 − ν̂)nt→ b∗t.

The convergence of the processes (〈ψ, ân(t)− λnnt〉, t ≥ 0) and (x̂n(t)− ν̂nt, t ≥ 0) to indepen-

dent Brownian motions follows by Donsker’s theorem [13]. This implies the result. 2

Thus, we have established the weak convergence of the processes {ûn(t), t ≥ 0}. An almost

sure version of the same convergence can be established by using the following result [98].

Lemma 4.5 (Skorohod Representation) Let {Xn, n ≥ 1}, X be random variables taking

values in a separable metric space (X , dX). If,

Xn
L→ X, (4.51)

there exist (X , dX) valued random variables {X̃n, n ≥ 1}, X̃ defined on a common underlying

probability space such that,

X̃
L
= X, (4.52)

X̃n
L
= Xn, ∀ n, (4.53)

X̃n → X̃ a.s., (4.54)

where X
L
= Y means that X and Y have the same distribution.

Using Lemma 4.5, one can construct a probability space where we have D [0,∞) valued processes

ûnS and ûS, such that, almost surely,

ûnS → ûS u.o.c.,

where ûnS and ûS are identical in distribution to ûn and û. Thus ûS is the Brownian motion

given in (4.49). We augment this probability space to include the other components of Z as well.

On this probability space, we will have the functions v̂n and ŵn as before. In this augmented

probability space, we will prove the convergence of the v̂n processes.

78

4.3.2 Convergence of v̂n

To prove the convergence of v̂n, we will require the following result, which is derived in [88]

from the weak estimates of [17].

Lemma 4.6 Let zn = (an, en, gn, dn, rn, sn, qn) be the fluid scaled process, with components

an = (af,ni)i,f and en = (enh)h∈H. Let N1 be an arbitrary subsequence of N. Then, there exists

a further subsequence N2 of N1, such that almost surely, as n → ∞ along N2, the fluid scaled

process satisfies, for any T > 0, for all i, j, f , c ∈ H,

max
0≤`≤nT

sup
0≤ε≤1

|af,ni (`+ ε)− af,ni (`)− λfi ε| → 0, (4.55)

max
0≤`≤nT

sup
0≤ε≤1

|enc (`+ ε)− enc (`)− γcε| → 0. (4.56)

The proof is provided in the appendix 4.A.

Next, we will show that the limit of the processes {vn(t), t ≥ 0} has a limit which satisfies

certain conditions necessary for it to be the unique regulator corresponding to the Brownian

motion û. The relationship between a one dimensional Brownian motion and its regulator is

given by the following result.

Lemma 4.7 (One dimensional Skorohod Problem) Let ξ ∈ D [0,∞), such that ξ is con-

tinuous, and ξ(0) ≥ 0. Then there exists a unique pair of functions ξ1, ξ2, both in D [0,∞) such

that,

1. ξ1(t) = ξ(t) + ξ2(t) for all t ≥ 0,

2. ξ1(t) ≥ 0 for all t ≥ 0,

3. ξ2(0) = 0,

4. ξ2(t) is non negative, non decreasing and continuous,

5. for any t ≥ 0, if ξ1(t) > 0, then it is not a point of increase of ξ2(t).

Further, this pair is given by,

ξ2(t) = sup
0≤τ≤t

(−ξ(τ))+, ξ1(t) = ξ(t) + ξ2(t), t ≥ 0. (4.57)

The proof of this result is given in the appendix 4.B.

79

If the process ξ(t) is a sample path of a Brownian motion, ξ2(t) is called its regulator,

and ξ1(t) is called the reflected (regulated) Brownian motion. It is clear that the proof of

convergence of the processes {ŵn, t ≥ 0} to the reflected Brownian motion corresponding to

the Brownian motion {û(t), t ≥ 0} would involve showing the limit of the processes {v̂n, t ≥ 0}
as ξ2 satisfies property (4.57) with ξ being û. This is done in the following theorem.

Theorem 4.2 For any subsequence N1 of N as given in Theorem 4.1, there is a further sub-

sequence N2 along which the processes {v̂n, t ≥ 0} has a limit v̂ = {v̂,≥ 0}, which satisfies,

1. v̂(t) is continuous.

2. v̂(t) is finite for t ∈ [0,∞)

3. v̂(0) = 0

4. If ŵ(t) > 0, then t is not a point of increase of v̂.

The proof of this result is provided in the appendix 4.C.

Now we outline the proof of Theorem 4.1.

Proof: [Proof of Theorem 4.1] As explained in the previous section, from Lemma 4.4, using

Lemma 4.5, one can construct a probability space where we have D [0,∞) valued processes ûnS
and ûS, such that, almost surely,

ûnS → ûS u.o.c.,

where ûnS and ûS are identical in distribution to ûn and û. Thus ûS is the Brownian motion

given in (4.49). We augment this probability space to include the other components of Z as

well. On this probability space, we will have the functions v̂n and ŵn as before.

Using Theorems 4.2 in combination with 4.7, we can see that v̂ is the unique regulator

corresponding to û. Consequently, we see that the process ŵ converges to a reflected Brownian

motion.

What remains to be shown is that {q̂n, n ∈ N} converges weakly to φŵ. This will follow if

q̂n converges to φŵ u.o.c.. For this, it suffices to show that for any t ≥ 0 and ε > 0, there exists

a δ > 0 such that,

lim sup
n→∞

sup
τ∈[t−δ,t+δ]+

|q̂n(τ)− φŵn(τ)| < ε. (4.58)

If this were true,the u.o.c. convergence can be obtained as follows. Let C be a compact set.

Let ε be fixed. Then, for every t ∈ C, there exists a δt such that (4.58) holds. Consider all

80

sets of the form (t− δ
2
, t+ δ

2
). These form an open cover for C. Since the set is compact, there

exists a finite subcover [75]. Therefore, there exists some finite number K such that, we have

numbers t1, . . . , tK all from C, such that,

C ⊂ ∪Ki=1

(
ti −

δti
2
, ti +

δti
2

)
. (4.59)

Using this in combination with (4.58), the result follows. The result (4.143) implies (4.58). 2

Now that we have established the existence of a limiting Brownian motion, we proceed to

demonstrate that the stationary distributions of the scaled systems converge to the stationary

distribution of the Brownian motion, in the next section.

4.4 Convergence of Stationary Distributions

We have the following result.

Theorem 4.3 As n→∞,

q̂n(∞)
L→ φŵ(∞), (4.60)

where the time argument being infinity denotes the respective stationary distributions.

To prove this result, we first define a new set of fluid limit processes, given by,

z̄n,r(t) =
Zn(brtc)

r
. (4.61)

Let z̄n,r = (ān,r, ēn,r, ḡn,r, d̄n,r, r̄n,r, s̄n,r, q̄n,r), denote the process (z̄n,r(t), t ≥ 0), and z̄n the fluid

limit process obtained, for each n, by taking the limit r → ∞. This limit exists just as in the

previous section. For each Zn, let πn denote the stationary distribution of the corresponding

network. These exist because for each n, the system Qn is stable. The draining time (time for

all queues to reach level zero) for the n-th fluid system will be denoted by τndrain. We can see

(from Sec. 4.2.1) that τndrain is inversely proportional to the distance from the boundary of the

capacity region Λ. It is also easy to see that, due to (4.28), the distance to the boundary of the

capacity region, which is the plane whose normal vector is ψ, decreases as 1
n
. Hence,

τndrain ≤ nT1, (4.62)

for some finite T1, assuming that the initial fluid level is unity.

We will first state a result from [67].

81

Lemma 4.8 Let {Xk, k ≥ 1} be a Markov chain with transition matrix P . Suppose there exists

non negative functions Φ1(x), Φ2(x) and Φ3(x) that satisfy, for all x,∫
x

P (x, dy)Φ1(y) ≤ Φ1(x)− Φ2(x) + Φ3(x), (4.63)

then, for any stopping time T,

Ex[
T−1∑
k=0

Φ2(Xk)] ≤ Φ1(x) + Ex[
T−1∑
k=0

Φ3(Xk)]. (4.64)

Now, we state a sufficient condition for the sequence {πn, n ≥ 0} to be tight. Note that by

writing q̂nx(·) we indicate that the initial condition of the queue is x.

Lemma 4.9 Assume that, for all nodes i, j, flows f , for any n ≥ 1, t ≥ 0, we have, for some

B <∞,

E[sup
0≤k≤t

|Af,ni (k)− āf,ni (k)|2] ≤ Bt, (4.65)

E[sup
0≤k≤t

|Rf,n
i (k)− r̄f,ni (k)|2] ≤ Bt, (4.66)

E[sup
0≤k≤t

|Df,n
i (k)− d̄f,ni (k)|2] ≤ Bt. (4.67)

Further, assume that there exists T such that for all t ≥ T , we have,

lim
|x|→∞

sup
n

1

|x|2
E|q̂nx(t|x|)|2 = 0. (4.68)

Then the sequence of distributions {πn} is tight.

The result is an adaptation of the techniques in [20] to our case. We give an outline of the

proof below.

Proof: From (4.68), it follows that there exists M , 0 < M < ∞, such that, with D = {x :

|x| < M}, for all x /∈ D,

sup
n

E||q̂nx(T |x|)|2 ≤ |x|
2

2
. (4.69)

Define δ = TM and τn(δ) = inf{t ≥ δ : |q̂nx(t)| ≤M}. Define a sequence of stopping times,

T0 = 0, Tm = Tm−1 + T max(|q̂nx(Tm−1)|,M). (4.70)

82

Define,

m∗n = min{m ≥ 1 : |q̂nx(Tm)| ≤M}. (4.71)

Define,

V̂n(x) = E[

∫ τn(δ)

0

(1 + |q̂nx(t)|)dt], (4.72)

where It follows that,

V̂n(x) ≤ E[

∫ Tm∗n

0

(1 + |q̂nx(t)|)dt] =
∞∑
k=0

E[

∫ Tk+1

Tk

(1 + |q̂nx(t)|)dt1{k<m∗n}]. (4.73)

Define the filtration Ft as the sigma algebra generated by {q̂nx(s) < 0 ≤ s ≤ t}. It can be shown

that (see appendix 4.D for proof) there exists a finite non negative constant c0 such that, for

all n, k, x, we have,

E[

∫ Tk+1

Tk

(1 + |q̂nx(t)|)dt|FTk]1{k<m∗n} ≤ c0(1 + |q̂nx(Tk)|2)1{k<m∗n}. (4.74)

Using this, one obtains the estimate,

sup
n
V̂n(x) ≤ c0 sup

n
E[

m∗n−1∑
k=0

(1 + |q̂nx(Tk)|2)]. (4.75)

Observe that the Markov chain {q̂nx(Tm),m ≥ 1} has the single step transition kernel,

Pn(x,A) = P̂ T max(|x|,M)
n (x,A), (4.76)

where P̂ t
n was the transition kernel of q̂n. Using (4.68) and (4.69), we can write, for some finite

positive B,

supn

∫
x

Pn(x, dy)|y|2 ≤ |x|2 − |x|
2

2
+B1[1,M](|x|). (4.77)

Using this in Lemma 4.8, and plugging in the bound obtained in (4.75), we see that, for all x,

sup
n

∫ τn(δ)

0

(1 + |q̂nx(t)|)dt ≤ c(1 + |x|2). (4.78)

83

It can be shown (for proof see the appendix 4.E) that, we see that there exists a positive κ <∞
such that, for all t, x and n,

E[V̂n(q̂nx(t))]

t
+

∫ t
0
E(1 + |q̂nx(s)|)ds

t
≤ V̂n(x)

t
+ κ. (4.79)

Define the functions,

V k
n (x) = min(V̂n(x), k), (4.80)

Γkn(x) =
1

t
(V k

n (x)− E[V k
n (q̂nx(t))]), (4.81)

Γn(x) =
1

t
(V̂n(x)− E[V̂n(q̂nx(t))]). (4.82)

Now, Γkn(x) → Γn(x) as k → ∞, by the monotone convergence theorem. Also, since πn is the

invariant measure of the n-th system, we have,∫
x

Γkn(x)πn(dx) = 0. (4.83)

By an application of Fatou’s Lemma, we can see that,∫
x

Γn(x)πn(dx) ≤ lim inf
k→∞

∫
x

Γkn(x)πn(dx) = 0. (4.84)

If V̂n(x) ≤ k, from (4.79), we know that,

Γkn(x) ≥ −κ. (4.85)

Ih V̂n(x) > k, we have,

Γkn(x) ≥ 0. (4.86)

Hence, Γkn(x) ≥ −κ for all x. From (4.79), we can see that,

Γn(x) ≥
∫ t

0
E(1 + |q̂nx(s)|)ds

t
− κ. (4.87)

84

Thus we obtain the bound,∫
x

Γn(x)πn(dx) ≥
∫ t

0

∫
x
E(1 + |q̂nx(s)|)πn(dx)ds

t
− κ. (4.88)

Combining with (4.84), and noting that the systems are assumed to be stationary, we obtain,∫
x

E(1 + |q̂nx(t)|)πn(dx) ≤ κ. (4.89)

Since πn is the invariant measure for the n-th system, this is equivalent to,∫
x

(1 + |x|)πn(dx) ≤ κ. (4.90)

Let ε be fixed. Let M = {x : |x| ≤M}, for some M > κ
ε
− 1 . Then,∫

x/∈M
(1 + |x|)πn(dx) ≥ (1 +M)πn(Mc). (4.91)

Using (4.90), we have that,

πn(Mc) ≤ κ

1 +M
< ε, (4.92)

by our choice of M . Since this is true for all n, it implies that the sequence of probability

measures {πn, n ≥ 1} is tight. 2

Lemma 4.10 In our system model, conditions (4.65)-(4.67) hold. Further, there exists T such

that (4.68) holds. Consequently, the sequence {πn} is tight.

Proof: Since the process {Af,ni (t)−af,ni (t), t ≥ 0} is a martingale, we can use Doob’s inequality

[3] to obtain,

E[sup
0≤k≤t

|Af,ni (s)− āf,ni (s)|2] ≤ B
′

1E|A
f,n
i (t)− āf,ni (t)|2,

≤ B
′

1tE|A
f,n
i (1)− āf,ni (1)|2,

= B1t,

where the second inequality follows from the i.i.d nature of the arrival process [36]. Hence,

(4.65) holds.

The bounds for R and D would hold if a corresponding bound holds for the Sfij processes.

85

Define the slotwise allocation process S̄fij, where,

Sfij(t) =
t∑

t′=1

S̄fij(Q(t
′
), H(t

′
)),

since S̄fij depends on both the queue state at time t, and the channel state at time t. Let S be

the set of possible values S(t) can take. Since H is finite (and consequently, S), there are only

a finite set of mappings from H to S. This set of mappings will be denoted by {F1, . . . ,FK1}.
Each S(Q(t), H(t)) will take the value of one of these functions. It is easy to see that the state

space of queues can be partitioned as,

Q = ∪m=1,...,K1Qm, (4.93)

where, if Q(t) ∈ Qm, we have S(Q(t), H(t)) = Fm(H(t)), and the Qm are disjoint. Now we can

write,

Sfij(t) =
t∑

t′=1

K1∑
m=1

Fm(H(t))1{Q(t)=m}, (4.94)

where 1 is the indicator function. Rewrite this as,

Sfij(t) =

K1∑
m=1

∑
k∈T̂m(t)

Fm(H(k)), (4.95)

where T̂m(t) is the set of time slots till t when the queue state was in Qm. Since the system is

stationary, we can also obtain,

sfij(t) = E[Sfij(t)]. (4.96)

Thus, we may write, with F̄m = E[Fm(H(1))],

|Sfij(t)− s
f
ij(t)|2 ≤ B

′

2

K1∑
m=1

∣∣∣∣∣∣
∑

k∈T̂m(t)

Fm(H(k))− F̄m

∣∣∣∣∣∣
2

,

where B
′
2 depends only on K1. For any m, along k ∈ T̂m(t), Fm(H(k)) is an i.i.d sequence.

86

Therefore, proceeding similar to what was done for A, we now obtain,

E[sup
0≤k≤t

|Sfij(k)− sfij(k)|2] ≤ B2E[
∑
m

|T̂m(t)|] = B2t,

where the equality follows, since
∑

m |T̂m(t)| = t. Hence the bounds hold for R and D as well.

Hence (4.65)-(4.67) hold, choosing B = max{B1, B2}.
To show (4.68), observe that, for a particular queue Qf

i , it follows from the queueing equation

that,

nq̂f,ni (t) = Qf,n
i (n2t),

= Qf,n
i (0) + Af,ni (n2t) +Rf,n

i (n2t)−Df,n
i (n2t).

Subtracting on either side with the corresponding fluid queue qf,ni (t
′
) at time t

′
= n2t, we

obtain,

Qf,n
i (n2t)− q̄f,ni (n2t) = Qf,n

i (0)− q̄f,ni (0) + Af,ni (n2t)

− āf,ni (n2t) +Rf,n
i (n2t)− rf,ni (n2t)

−Df,n
i (n2t) + d̄f,ni (n2t).

Hence, we have,

|Qf,n
i (n2t)− q̄f,ni (n2t)|2 ≤ C(|Qf,n

i (0)− q̄f,ni (0)|2

+ |Af,ni (n2t)− āf,ni (n2t)|2

+ |Rf,n
i (n2t)− r̄f,ni (n2t)|2

+ |Df,n
i (n2t)− d̄f,ni (n2t)|2).

Choosing Qf,n
i (0) = q̄f,ni (0), we obtain, using (4.65)-(4.67),

E|Qf,n
i (n2t)− q̄f,ni (n2t)|2 ≤ C2n

2t, (4.97)

and hence it follows for the vector process Q, with a higher constant C
′
2,

E|Qn(n2t)− q̄n(n2t)|2 ≤ C
′

2n
2t. (4.98)

From (4.62), since the draining time of the fluid system q̄n with initial condition equal to one,

87

τndrain ≤ nT1, the fluid system with initial condition x, will be zero at any time greater than

τndrain|x|. Setting t ≥ T1|x|, and dividing by n2, we get,

E|q̂nx(t|x|)|2 ≤ C
′

2t|x|. (4.99)

Since the bound is uniform over n, dividing by |x|2 and taking |x| → ∞ gives the result. 2

With this result, we are ready to prove Theorem 4.3.

Proof: [Proof of Theorem 4.3] Since the πn are tight, any subsequence of πn has a convergent

subsequence. Let such a limit point be π∗. On the convergent subsequence, assume that

the initial conditions Ẑn(0) are distributed as πn. Since the systems Ẑn converge to a reflected

Brownian motion (RBM), the initial condition of the RBM ŵ will have distribution π∗. Also, we

have shown that finite dimensional distributions of ẑn also converge to that of ŵ. In particular,

ẑn(t) weakly converges to ŵ(t) for any t ≥ 0. But the distribution of ẑn(t) is πn. Thus

distribution of ŵ(t) is π∗ for each t. Hence π∗ is the stationary distribution of ŵ. 2

The Brownian motion ŵ obtained as the limit of ŵn is a unidimensional reflected Brownian

motion, having drift b∗ < 0. If ŵ(∞) has the stationary distribution of ŵ, from [41],

P[ŵ(∞) < y] = 1− exp(2b∗y/σ2). (4.100)

4.5 Numerical Simulations

We will consider two example networks.

Example 1. Consider a star network topology (Figure 4.2). There are two Poisson dis-

tributed arrival processes, one arriving at node 1, with node 4 as its destination. The other

arrives at node 2, with node 5 as destination. We will also assume that two links which share

a common node interfere with each other. We assume that the channels are independent and

identically distributed, with the distribution being uniform over the set {0, 1, 2, 3}. We con-

sider the arrival vector (λ1, λ2) = (λ, λ), i.e., increasing along the line of unit slope. In this

case λ∗ = (0.65, 0.65). From the diffusion approximation and (4.100), we can see that the mean

of the Brownian motion corresponding to the queue can be approximated by the vector φ σ2

2b∗
.

The Brownian motion is a limit of the scaled process of the form Q(n2t)
n

. For a large n, we may

approximately write,

Q(n2t) u nφ
σ2

2b∗
.

88

1

2

3

5

4

Figure 4.2: Example 1: The Network

If we run the simulations for a time n, we may further also approximately write b∗ = n|λ−λ∗|.
Hence, we have the approximation,

Q(∞) u φ
σ2

2|λ− λ∗|
. (4.101)

We will be looking at the total queue length of the flow 1→ 3→ 4. The value of σ2 is 2λ+ σ̂2.

The vector φ is approximately (1√
2
, 1√

2
) (The value of Q̄ for both queues is set at 100). We take

σ̂2 u 8. The values of the total queue length of the flow 1 → 3 → 5 are listed in Table 4.1

(owing to symmetry both queue lengths are same), for simulation runs of length 105, averaged

over 20 simulations. It can be seen that the approximations follow the queue length closely.

In order to demonstrate that the algorithm can satisfy different QoS requirements, we

Arrival Rate λ Mean Queue Length Approximation
0.64 233 232
0.641 263 258
0.642 319 290
0.643 367 332
0.644 381 387
0.645 479 465
0.646 517 581
0.647 568 775

Table 4.1: Approximation of Queues. The mean queue length of the flow 1 → 3 → 5 corre-
sponding to various arrival rates is displayed, along with the numerical approximation.

simulate the network at three points in the interior of the capacity region. The mean queue

length asked from the flows is 250 and 100 respectively. We also pick a2 in the expression of α

for the second flow to be 4, since it requires a tighter constraint to be met. In Table 4.2, the

89

first column gives the arrival rate, the second shows the target queue length for the two flows,

and the final column shows the queue length obtained. We see that the end-to-end mean queue

length requirement is met for both the flows till rate 0.64. The capacity boundary is at 0.65.

Thus, our algorithm can provide QoS under heavy traffic as well.

λ Mean Queue Length Asked Queue Length Obtained
0.63 (250,100) (213,98)
0.64 (250,100) (264,110)
0.641 (250,100) (292,120)

Table 4.2: Mean Queue Length Target and Obtained, for both flows.

Example 2. Consider the network in Figure 4.3. The arrival process, channel state dis-

1

2

3

5

4

7

6

8

9

Figure 4.3: Example 2: The Network

tribution and interference constraints are the same as in Example 1. There are three flows,

1 → 3 → 4 → 6 → 8, 2 → 3 → 4 → 5 and 7 → 4 → 6 → 9. They will be called Flow

8, Flow 5 and Flow 9. The boundary of the capacity region, λ∗ ≈ (0.59, 0.59, 0.01). We take

arrival rates close to this point and show the values of total queue length of Flow 8 obtained by

simulations and the numerical approximations (using (4.101)), in Table 4.3. For calculating the

approximation, we use σ̂2 ≈ 9. In this case also, the approximations track the queue lengths

well. Just as in the previous case, we provide an example to show how the queue length values

meet targets, in Table 4.4. These are simulated at the arrival rate (0.55.0.55, 0.01), which is

in the interior of the capacity region. In the weight function α, we use a1 = 5, a2 = 1 to give

weights to flows.Since flows 8 and 5 are competing for network resources; delays of both cannot

be reduced simultaneously. This is also clear from the simulations.

90

Table 4.3: Entries of the form (a,b) indicate delay target a, delay achieved b.
Arrival Rate λ Mean Queue Length Approximation

0.5 21 26
0.54 52 47
0.56 99 79
0.57 119 144
0.58 253 239
0.582 331 299
0.584 403 399
0.585 457 479

Table 4.4: Entries of the form (a,b) indicate delay target a, delay achieved b. Arrival rate is
(0.55.0.55, 0.01).

Mean Delay(slots) for each flow
Flow 8 Flow 5 Flow 9
(50,52) (100,112) 9
(40,46) (100,114) 9
(100,139) (50,53) 21

4.6 Conclusion

We have presented an algorithm, similar to that of Chapter 3, for scheduling in multihop

wireless networks that guarantees end-to-end mean delays of the packets transmitted in the

network. The algorithm is throughput optimal. Using diffusion scaling, we obtain the Brownian

approximation of the algorithm. We also prove theoretically that the stationary distribution

of the limiting Brownian motion is the limit of stationary distributions of a sequence of scaled

systems, and is consequently a good approximation for the stationary distribution of the original

system. Using these relations, we obtain an approximation for queue lengths, and demonstrate

via simulations that these are accurate.

91

4.A Proof of Lemma 4.6

It suffices to show the result for the a process; the result for e follows similarly.

First, we establish a Lemma due to [17].

Lemma 4.11 Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with mean µ, such that

they satisfy the tail condition,

E[(X1)21{|X|>x}] ≤ φ(x), (4.102)

where,

φ(x)→ 0 as x→∞. (4.103)

Define Sn =
∑n

i=1Xi. Then, for fixed δ > 0 and large enough n,

P(max
1≤i≤n

|Si − iµ| ≥ δn) ≤ δ

n
. (4.104)

Proof: For each n, write Xn as,

Xn = Yn + Zn, (4.105)

where, {Yn.n ≥ 1} and {Zn.n ≥ 1} are i.i.d., given by,

Yn = Xn1{|Xn|≤M}, (4.106)

Zn = Xn1{|Xn|>M}, (4.107)

for some finite M > 0. Let µY = E[Y1], µZ = E[Z1]. Thus, we have,

Sn = SYn + SZn , (4.108)

where SYn =
∑n

i=1 Yi and SZn =
∑n

i=1 Zi. We can write,

P(|Si − iµ| ≥ δn) = P(|SYi + SZi − iµY − iµZ | ≥ δn), (4.109)

≤ P(|SYi − iµY | ≥
δn

2
) + P(|SZi − iµZ | ≥

δn

2
). (4.110)

92

Using Chebyshev’s inequality, one obtains the bounds,

P(|SYi − iµY | ≥
δn

2
) ≤ 24E[|SYi − iµY |4]

δ4n4
≤ 24 i

224M4

δ4n4
≤ 28M4δ−4n−2, (4.111)

P(|SZi − iµZ | ≥
δn

2
) ≤ 22E[|SZi − iµZ |2]

δ2n2
≤ 22φ(M)

δ2n2
= 22φ(M)δ−2n−2, (4.112)

where the second line of inequalities used the tail condition (4.103). Choosing M = n
1
8 , we

obtain,

P(|Si − iµ| ≥ δn) ≤ 1

n
(28δ−4n−

1
2 + 22φ(n

1
8)δ−2n−2). (4.113)

Choosing n large enough, we obtain,

P(|Si − iµ| ≥ δn) ≤ δ

n
. (4.114)

The result follows from this. 2

Now, consider Afi (n(` + ε)) − Afi (n`), for ε ∈ (0, 1]. This process has i.i.d. increments at

times when n(` + ε) takes integer values. Let L` denote the corresponding values of ε. Using

Lemma 4.11, we may write,

P(max
ε∈L`
|Afi (n(`+ ε))− Afi (n`)− λ

f
imε| ≥ δdne) ≤ δ

dne
, (4.115)

where mε is the size of the set of all elements of L` smaller than or equal to ε. This is equivalent

to,

P(max
ε∈L`
|af,ni (`+ ε)− af,ni (`)− λfi

mε

n
| ≥ δ

dne
n

) ≤ δ

dne
. (4.116)

Since mε
n

on ε ∈ (0, 1] converges uniformly to ε, we can write the above as,

P(sup
0≤ε≤1

|af,ni (`+ ε)− af,ni (`)− λfi ε| ≥ δ
′
) ≤ δ

dne
<
δ
′

n
, (4.117)

where δ
′
= δ dne

n
. By means of a union bound, we can se that,

P(max
0≤`≤nT

sup
0≤ε≤1

|af,ni (`+ ε)− af,ni (`)− λfi ε| ≥ δ
′
) < (nT + n)

δ
′

n
= (T + 1)δ

′
. (4.118)

93

Given a subsequence N1 of N, choose a further subsequence N2 along which, there is a sequence

T (n) and δ(n) such that, (4.118) is satisfied with T = T (n) and δ
′
= δ(n) and,

∞∑
n=1

(T (n) + 1)δ(n) <∞. (4.119)

From the Borel-Cantelli Lemma [3], it follows that almost surely, as n→∞ along N2,

max
0≤`≤nT

sup
0≤ε≤1

|af,ni (`+ ε)− af,ni (`)− λfi ε| → 0. (4.120)

94

4.B Proof of Lemma 4.7

Define

ξ2(t) = sup
0≤τ≤t

(−ξ(τ))+. (4.121)

It is easy to see that ξ2(t) is continuous, since ξ(t) is continuous. Since

(−ξ(t))+ ≥ 0 ∀t, (4.122)

we can see that ξ2(t) ≥ 0 for all t. Also, from the definition of ξ2, it is easy to see that ξ2(t) is

a non decreasing function and that ξ1(t) = ξ(t) + ξ1(t) ≥ 0 for all t. Thus we obtain properties

1− 4 of Lemma 4.7. What remains to be shown is property 5, and that ξ2 is unique (give ξ).

Assume that ξ1(t) > 0. Observe that, if t is a point of increase of ξ2(t), it would imply that,

arg0≤τ≤t sup(−ξ(τ))+ = t, (4.123)

and hence, ξ2(t) = −ξ(t). Consequently,

ξ1(t) = ξ(t) + ξ2(t) = 0, (4.124)

which is a contradiction. Hence property 5 of Lemma 4.7 follows.

To show uniqueness, assume there exists a pair of functions ξ̃1 and ξ̃2 that satisfy conditions

1− 5 of Lemma 4.7. Then, define,

ξ0(t) = ξ1(t)− ξ̃1(t) = ξ2(t)− ξ̃2(t). (4.125)

Clearly, ξ0(t) is the difference of two non decreasing functions. Thus, it is differentiable almost

everywhere [70]. We can write,

0 ≤ 1

2
(ξ1(t)− ξ̃1(t))2 =

∫ t

0

(ξ1(τ)− ξ̃1(τ))d(ξ1(τ)− ξ̃1(τ)) (4.126)

=

∫ t

0

(ξ1(τ)− ξ̃1(τ))d(ξ1(τ)− ξ̃1(τ)), (4.127)

=

∫ t

0

(ξ1(τ)− ξ̃1(τ))d(ξ2(τ)− ξ̃2(τ)), (4.128)

=

∫ t

0

ξ1(τ)dξ2(τ) + ξ̃1(τ)dξ̃2(τ)− ξ1(τ)dξ̃2(τ)− ξ̃1(τ)dξ2(τ). (4.129)

95

By property 5, we have that,

ξ1(t)dξ2(t) = 0, (4.130)

ξ̃1(t)dξ̃2(t) = 0. (4.131)

Substituting in (4.129), and noting that ξ1(t), ξ̃1(t), dξ̃2(t) and dξ2(t)are all non negative, we

see that,

0 ≤ 1

2
(ξ1(t)− ξ̃1(t))2 ≤ 0. (4.132)

Hence ξ1 and ξ̃1 (and consequently ξ2 and ξ̃2) are identical.

96

4.C Proof of Theorem 4.2

We need to show that, along the subsequence N2, we have a limit v̂ of v̂n, which has the

properties:

1. v̂(t) is continuous.

2. v̂(t) is finite for t ∈ [0,∞)

3. v̂(0) = 0

4. If ŵ(t) > 0, then t is not a point of increase of v̂.

To prove these properties, we need to study a set of fluid sample paths.

Rescaled Fluid Paths

To study diffusion properties on an interval [tn, tn + δ] for δ > 0, we look at fluid paths on

the time [ntn, ntn + nδ]. We consider the following family of fluid paths, started at a time T

apart from each other. For a time evolving process f(t), define the operator Θ(τ) as the shift,

corresponding to the process started at time τ .

Consider the fluid scaled process zn. Consider a shifted form of these processes,

z̃m,l = Θ(mtm + T l)zm, (4.133)

where Θ(x)ξ denotes the function ξ started at x. Define the family of processes,

Z = {z̃m,l(m),m ∈ N3}, (4.134)

where the index set N3 has the property that as m → ∞ along N3, tm → t. Using these

fluid paths we can obtain properties of the diffusion scaled process, since an interval of time

[mt,mt+mδ] on the diffusion scale corresponds to a time [t, t+ δ] on the diffusion scale.

If tm → t, and l(m) ∈ [0, 2δm/T − 1], a time s ∈ [0, T] for the path z̃(m, l(m)), for m large

enough, corresponds to a time,

s
′
= tm + l(m)T/m+ s/m ∈ [t− 3δ, t+ 3δ]+. (4.135)

We have the following results regarding the behaviour of the fluid sample paths, from [88]. The

first is presented without proof.

97

Lemma 4.12 Consider the family Z with an associated sequence tm, constants T and δ, both

positive. Assume that |q̃m,l(m)| ∈ [c1, c2], with 0 ≤ c1 ≤ c2 <∞, and l(m) ∈ [0, 2δm/T − 1]∩Z.

Then, there is a subsequence mk along which, z̃m,l(m) converges to a fluid limit z, u.o.c, with

|q(0)| ∈ [c1, c2].

Recall the Lyapunov function L1(q(t)) defined in the proof of Lemma 3.4. This function is non

negative, finite and its time derivative is negative. If, along q(t), if limt→∞L1(q(t)) = 0, define

L2 = L1. Else, if limt→∞L1(q(t)) = L∗ > 0, define L2(q(t)) = L1(q(t))
L∗

− 1. Clearly, L2(q(t))

decreases to zero along any fluid path. Let β be a universal constant (denoted as κ in (60) of

[88]). Then, we have the following result.

Lemma 4.13 Under our scheduling policy, assume that there is a subsequence such that, along

this, v̂n → v̂. Suppose further that along this subsequence, we have

sm → s ≥ 0, ŵm(sm)→ K > 0, (4.136)

lim sup
m→∞

|q̂m(sm)| < K1K, (4.137)

for some fixed K1 > 1. Let δ > 0 be chosen such that,

ε = Oû([s− 3δ, s+ 3δ]+) < 0.5K, (4.138)

where Oû[a, b] = supx,y∈[a,b] |u(x) − u(y)|. Let K2 = β2K1K + 2ε. Then, for any ε2 > 0

sufficiently small, there exists a time T such that, for m sufficiently large, we have,

K − 2ε < w̃m,0(u) < K2, for u ∈ [0, T], (4.139)

(K − 2ε)/β < |q̃m,0(u)| < 2βK2. (4.140)

For l ∈ [1, 2δrT−1 − 1] ∩ Z, we have,

L2(q̃m.l(0)) < 2ε2, (4.141)

L2(q̃m.l(T)) < 2ε2, (4.142)

L2(q̃m.l(u)) < 3ε2, for u ∈ [0, T], (4.143)

ṽm,l(u) = ṽm,l(u)− ṽm,l(0) = 0, for u ∈ [0, T], (4.144)

K − 2ε < w̃m,l(u) < K2, for u ∈ [0, T], (4.145)

(K − 2ε)/β < |q̃m,l(u)| < 2βK2, (4.146)

98

The proof of this Lemma is an adaptation of the proof of Lemma 7 [88] to our case. We present

the main arguments below.

Proof: [Proof of Lemma 4.13] Observe that, since L2 is decreasing to zero, there exists a time

T , such that,

L2(t) ≤ ε2, ∀t ≥ T. (4.147)

Consider the case l = 0. First, observe that, for m large enough,

lim sup
m→∞

sup
u∈[0,T]

|q̃m,0(u)| < β lim sup
m→∞

|q̃m,0(u)| (4.148)

This is true because, if it were not, using Lemma 4.12, we could have a sequence of z̃m,0 which

converge to a fluid limit z with |q(u)| ≥ β|q(0)| for some u. However, this is not possible since,

sup
t≥0
|q(t)| < β|q(0)|. (4.149)

Alongwith our assumptions on m, this implies that,

lim sup
m→∞

sup
u∈[0,T]

|q̃m,0(u)| < β lim sup
m→∞

|q̃m,0(u)| < βK1K, (4.150)

lim sup
m→∞

sup
u∈[0,T]

w̃m,0(u) < β2K1K. (4.151)

Using the non decreasing property of w, we can show,

lim inf
m→∞

inf
u∈[0,T]

w̃m,0(u) ≥ K. (4.152)

Choosing T large enough, we can have,

L2(q̃m,0(T)) < 2ε2. (4.153)

Since q̃m,0(T) = q̃m,1(0), it also follows that,

L2(q̃m,1(0)) < 2ε2. (4.154)

Now, consider the following properties, for l ∈ [1, 2δm/T − 1].

L2(q̃m.l(0)) < 2ε2, (4.155)

99

L2(q̃m.l(T)) < 2ε2, (4.156)

L2(q̃m.l(u)) < 3ε2, for u ∈ [0, T], (4.157)

ṽm,l(u) = ṽm,l(u)− ṽm,l(0) = 0, for u ∈ [0, T], (4.158)

K − 2ε < w̃m,l(u) < K2, for u ∈ [0, T], (4.159)

(K − 2ε)/β < |q̃m,l(u)| < 2βK2. (4.160)

We will show these hold, by induction on l. Asssume the properties hold for all l < l1, but

at least one of the abover properties is violated for l = l1. Since the properties hold up to

l = l1 − 1, we have that,

L2(q̃m,l1(0)) = L2(q̃m,l1−1(T)) < 2ε2. (4.161)

Since w is non decreasing, we have,

w̃m,l1(0) > K − 2ε. (4.162)

From the relation between |q| and w it follows that,

|q̃m,l1(0)| ∈
[
K − 2ε

β
, 2βK1

]
. (4.163)

Thus, for a choice of T appropriately large, we will have,

L2(q̃m.l1(0)) < 2ε2, (4.164)

L2(q̃m.l1(T)) < 2ε2, (4.165)

L2(q̃m.l1(u)) < 3ε2, for u ∈ [0, T]. (4.166)

To show the non-increasing property of ṽ as in (4.158), observe that the queue length and

workload are strictly positive as shown above. Since we had,

vm,l(t) = xm,l(t)− 〈ψ, dm,l(t)− rm,l(t)〉, (4.167)

and since our optimization is such that we choose the allocation vector µ∗ such that,

µ∗ = argµ max
∑
i,j,f

α(qfi)qfijµ
f
ij, (4.168)

100

= argµ max
∑
i,j,f

α(qfi)(qfi − q
f
j)µfij. (4.169)

The second equation holds because the allocation vector ṡfij(t) is zero when qfi − q
f
j ≤ 0. This

optimization may be rewritten as a function of new variables µ̃, where µ̃fi =
∑

j µ
f
ij −

∑
k µ

f
ki.

We have the optimal µ̃∗ given by,

µ̃∗ = argµ̃ max
∑
i,j,f

α(qfi)qfi µ̃
f
i . (4.170)

Since (4.166) holds, it will be that (choosing ε2 small enough), this is exactly the result of the

optimization,

µ̃∗ = argµ̃ max
∑
i,j,f

ψfi µ̃
f
i , (4.171)

since the function L2 indicates how close we are to the collapse vector ψ. From the definition

of X, it follows that the scaled x̃ attains the value given above, and hence ṽ does not increase

in the interval.

Since ṽ remains at zero, we can see that any increase in w̃ is an increase in ũ, and hence,

w̃m,l1(u) = w̃m,0(T) + ũm(tm + l1T/m+ u/m)− ũm(tm + T/m). (4.172)

Since the oscillation of û is bounded and since ũm → û, the bounds (4.159) and (4.160) also

follow for l1. Hence, we have inductively shown that the properties (4.141)-(4.146) hold. 2

With the above result, we also obtain the properties of v̂.

4.9.1 Proof of the properties of v̂

The proof of this result follows as an application of Lemma 4.13, as in the proof of Theorem 1

in [88]. We give a brief outline below.

First we show that v̂(t) is finite for all t ∈ [0,∞). Suppose this is not true. Then we

will have some t0 = inf{t ≥ 0 : v̂(t) = ∞}. Fix δ > 0, and ε = Oû[t − 4δ, t + 4δ]+. Choose

∆ ∈ (0,min(t, δ)) and C > ŵ(t−∆)+2ε. Define the sequence, tn = min{s ≥ t−∆ : ŵ(s) ≥ C}.
Since v̂ is RCLL, and since v̂(t) =∞, it follows that,

lim sup
n

tn ≤ t. (4.173)

Also, lim supn ŵ
n(t − ∆) < C. Now, in a small interval, the process ŵ will not have jumps,

101

since,

ŵn(t)− ŵn(t−) ≤ 〈ψ, ân(t)− ân(t−)〉+ 〈ψ, r̂n(t)− r̂n(t−)〉, (4.174)

and since the process R is bounded by the i.i.d channel process H. Using Lemma 4.6, the above

quantity goes to zero. Hence it will follow that, as n→∞,

ŵn(tn)→ C. (4.175)

Choose a further subsequence along which,

tn → t
′ ∈ [t−∆, t]. (4.176)

Along this, applying Lemma 4.13, we see that v̂ is finite on the interval [0, t
′
+ δ]. Thus we have

a contradiction, and hence v̂ is finite. Note that a similar construction can be done for t = 0

as well.

The proof for continuity can also be done similarly, by finding point t which is a point of

discontinuity. Choosing a suitable time before t, one can construct a sequence as before, which

converges to a value C. Once again, we will use Lemma 4.13 to claim a contradiction. A similar

proof holds for the other properties of v̂ as well.

102

4.D Proof of (4.74)

Due to the strong Markov property, it suffices to show that,

E
∫ T1

0

(1 + |q̂nx(s)|ds) ≤ c0(1 + |x|2). (4.177)

Observe that,

Qn(n2t) = x+ qn(n2t) + An(n2t)− an(n2t) +Rn(n2t)− rn(n2t)−Dn(n2t) + dn(n2t), (4.178)

where,

qn(t) = an(t) + rn(t)− dn(t), (4.179)

is the fluid limit corresponding to the n-th system. Thus, one obtains the inequality,

E[sup
0≤t≤T

Qn(n2t)] ≤ x+ E[sup
0≤t≤T

qn(n2t)] + E[sup
0≤t≤T

|An(n2t)− an(n2t)|] (4.180)

+ E[sup
0≤t≤T

|Rn(n2t)− rn(n2t)|] + E[sup
0≤t≤T

|Dn(n2t)− dn(n2t)|]. (4.181)

First we observe that,

sup
0≤t≤T

qn(n2t) ≤ sup
t
qn(t). (4.182)

Since the queue is non zero only till the draining time (given by (4.62)), and since the total

input rate to a queue is bounded by the sum of all mean arrival rates and mean channel gains,

it follows that there exists a constant c independent of t and n, such that,

sup
t
qn(t) ≤ x+ nT1, (4.183)

where T1 is a constant (see (4.62)). For the process A (and similarly for R and D), we can see

that,

E[sup
0≤t≤T

|An(n2t)− an(n2t)|] = E

[√
sup

0≤t≤T
|An(n2t)− an(n2t)|2

]
(4.184)

≤
√

E[sup
0≤t≤T

|An(n2t)− an(n2t)|2], (4.185)

103

where the second inequality followed from Jensen’s inequality. Using the bounds (4.65),(4.66)

and (4.67), in the above equation, and plugging this as well as (4.183) in (4.180), we see that,

for some constant c1

E[sup
0≤t≤T

q̂nx(t)] ≤ c1(1 + x+ T). (4.186)

By definition, T1 ≤ c2(1 + |x|). Using this fact and the above bound in the LHS of (4.177), we

see that (4.177) is indeed true.

104

4.E Proof of (4.79)

This is adapted from the proof of Theorem 3.5 of [20] and Proposition 5.4 of [28].

We are given that, for all x,

sup
n

∫ τn(δ)

0

(1 + |q̂nx(t)|)dt ≤ c(1 + |x|2). (4.187)

First we show that there exists a finite B such that,

E
∫ τn(t)

0

(1 + |q̂nx(s)|)ds ≤ V̂n(x) +Bt. (4.188)

Since the LHS is increasing in t, we only need to show it holds for times of the form mδ,

m = 1, 2, . . . , which will imply the result for t. Thus, we show that, for all m,

E
∫ τn(mδ)

0

(1 + |q̂nx(s)|)ds ≤ V̂n(x) +mb, (4.189)

where b = supn supx ∈ DV̂n(x). This is done by induction. The statement is true for m = 1.

Assume it is true up to some m. Then, we have,

E
∫ τn((m+1)δ)

0

(1 + |q̂nx(s)|)ds = E
∫ τn(δ)

0

(1 + |q̂nx(s)|)ds+ EEq̂n
τn(δ)

∫ τn((m)δ)

0

(1 + |q̂nx(s)|)ds

(4.190)

≤ V̂n(x) + sup
n

sup
x∈D

V̂ n(x) +mb, (4.191)

≤ V̂ n(x) + (m+ 1)b. (4.192)

It follows that (4.188) holds for all t, with some B ≤ 2b. Then, suing the strong Markov

property, we obtain,

E[V̂n(q̂nx(t))] = V̂n(x) + EEq̂n
τn(δ)

∫ τn(t)

0

(1 + |q̂nx(s)|)ds−
∫ t

0

Ex[1 + |q̂nx(s)|ds], (4.193)

≤ V̂ n(x) +Bt+ b−
∫ t

0

Ex[1 + |q̂nx(s)|ds]. (4.194)

This, along with (4.188), yields the result.

105

Chapter 5

Minimizing Age in a Multihop

Wireless Network

In the thesis thus far we have been considering end-to-end mean delay or hard delay deadline

for different flows passing through a multihop wireless network. These are traditional QoS

requirements useful in transmission of data files, or real time traffic. However, in IoT sometimes

the receiver is concerned about the latest data from the source. For example, in an industrial

sensor network, the fusion center may be interested in the latest state of the system and the

past states may not be important. Now it is not needed to have all the packets to be received

at the destination. In this chapter we consider this new QoS for scheduling of wireless channels.

We will see that the solution obtained so far in the thesis will not be appropriate at all for this

scenario. But, the insights obtained and the algorithms developed will help us obtain a good

solution even for this problem.

There are multiple source-destination pairs, transmitting data through multiple wireless

channels, over multiple hops. We propose a network control policy which consists of a dis-

tributed scheduling algorithm, utilizing channel state information and queue lengths at each

link, in combination with a packet dropping rule. Dropping of older packets locally at queues

is seen to reduce the average age of flows, even below what can be achieved by Last Come First

Served (LCFS) scheduling. Dropping of older packets also allows us to use the network without

congestion, irrespective of the rate at which updates are generated. Furthermore, exploiting

system state information substantially improves performance. The proposed scheduling policy

obtains average age values close to a theoretical lower bound as well.

106

t1 t2t̂1 t̂2

α(t)

t

Figure 5.1: Evolution of Age. The red and blue lines show the evolution of the age of information
at the destination and source respectively, as a function of time. At times t1 and t2, the first
and second packets are generated at the source. These are received at the destination at times
t̂1 and t̂2.

5.1 Age of Information

Consider a source generating packets to be sent to a destination, across a network. Let the

packets be generated at the source at times t1, t2, t3, Let the same packets be received at

the destination at times t̂1, t̂2, t̂3 Note that the packets need not be received in the same

order in which they were generated. Define,

n∗(t) = argn max{tn : t̂n ≤ t}. (5.1)

This is the index of that packet among all packets received at the destination, till time t, which

has been generated most recently, i.e., the freshest packet present at the destination. The age

of information (at the destination) is defined to be the age of this packet, i.e.,

α(t) = t− tn∗(t). (5.2)

The evolution of the age function α(t) is given in Figure 5.1. Note that AoI can be defined for

the source as well, seeing it as a point that receives the packets with zero delay. We define the

107

kn

m

j

i

p

l

A
f
i (t)

Q
f
i (t)Him(t)

Figure 5.2: A simplified depiction of a Wireless Multihop Network. The flow f follows the path
i→ m→ j → l.

Average AoI ᾱ(t) as,

ᾱ(t) =
1

t

∫ t

0

α(τ)dτ. (5.3)

We will refer to the (average) age at the destination node to be the (average) age of the flow.

Between the source and destination, packets experience queueing delays and transmission de-

lays. This system can be modelled as a system of queues. While the queueing delay contributes

to the age process, delay by itself is not identical to age. The age process depends on both the

queueing delay and the rate at which packetized updates are being generated at the source.

One can reduce the packet generation rate, which may lead to lower buffer levels, and hence,

lower delays. However, owing to fewer updates, the age process may not reduce. On the other

hand, sending too many updates may lead to congestion in the network.

5.2 System Model and Problem Formulation

We consider a multihop wireless network (see Fig (5.2)), modelled as a graph G = (V,E), where

V is the set of nodes, and E ⊆ V × V is the set of edges (links) on V. In the network, packets

are generated at source nodes, to be sent to various destination nodes. Each such stream of

packets, corresponding to a source-destination pair, is called a flow. The set of all flows in the

network will be denoted by F. For any flow f ∈ F, we will use src(f) and des(f) to denote its

source and destination nodes, and path(f) ⊆ V to be the path of nodes connecting the source

108

of flow f to its destination. We assume that paths are fixed and known a priori. This would

imply that a routing algorithm was employed beforehand to create these routes (see [1] for a

survey of common routing algorithms in wireless sensor networks).

We have a slotted system, with time index t ∈ {0, 1, 2, . . . }. Each slot is of unit length

and time duration [t, t + 1) denotes slot t. The arrival process for a flow f with source node

src(f) = i is denoted by Afi (t). We will assume that Afi (t) evolves as an independent and

identically distributed (i.i.d.) sequence across time slots and independent of other flows. The

wireless channel gain of a link (i, j) ∈ E at time t will be denoted by Hij(t). This is also i.i.d.

across time for a link, and is independent across links. The overall channel state is denoted by

H(t) = {Hij(t)}(i,j)∈E. We transmit at a constant power and a fixed rate. If a channel gain is

above a threshold and interference from other channels is limited then we assume that there is

a successful transmission. At each node i, there is a queue Qf
i (t) which consists of packets of

flow f present at node i. Let Sfij(t) denote the number of packets of flow f sent over link (i, j)

in time slot t. Then, we can write the queue evolution equation as,

Qf
i (t+ 1) = Qf

i (t) +
∑
j

Sfji(t)−
∑
k

Sfik(t), (5.4)

where i 6= des(f). By αf (t) and ᾱf (t) we denote the AoI and average AoI of flow f at its

destination node, as defined by (5.2) and (5.3).

We will assume that the links fall into interference sets. An interference set is a subset of

E such that no two members of that set can transmit simultaneously. These sets define the

interference constraints of the system. Subject to these constraints, only certain configurations

of links can be activated at a time.

We define a schedule as a mapping s : E×F → {0, 1}. If s(e, f) = 1, then flow f is scheduled

to be transmitted on link e in that slot. Not all mappings from E × F to {0, 1} are feasible

schedules. The links that are active must obey the interference constraints. Further, two flows

cannot be simultaneously scheduled on a link. The schedules that obey these constraints are

called feasible schedules. Denote the set of all feasible schedules by S. Corresponding to each

feasible schedule s and channel state H, there is a rate vector R = {Rf
ij}(i,j)∈E,f∈F. Let αfi (t)

denote the age of flow f at node i. We are interested in obtaining control policies that can

reduce the AoI at the destinations. To this end, we propose the following policy.

5.2.1 Control Policy

The control policy we propose will be called State Dependent Scheduling with Packet Dropping

(SDSPD). This policy consists of two aspects: a service discipline and an optimization rule.

109

5.2.1.1 Service Discipline

Under the SDSPD policy, at each queue, we keep only the latest packet of a flow, and all

others are discarded. Thus, if a more recently generated packet of a flow is received at a queue,

all packets generated prior to that packet of that flow at the queue are dropped. This is a

local decision that can be implemented at the node level. There is no need for exchange of

information between the nodes for this purpose. Consequently, at all nodes i and for all flows

f , Qf
i ∈ {0, 1}. Such a service discipline will result in a performance similar to (or better than)

an LCFS discipline.

5.2.1.2 Optimization Rule

The schedule at time t is chosen to be s∗(t), where,

s∗(t) = args∈S max
∑
i,j,f

wf (αf (t))Qf
i (t)R

f
ij(s,H(t)), (5.5)

where wf is the weight for flow f , which is a function of the age αf (t) of flow f at time t at its

destination node. Also,

wf (x) =

 1 if x < ᾱf ,

1 + β if x ≥ ᾱf ,
(5.6)

where ᾱf is a desired average age for flow f , and β is a fixed positive quantity. This represents a

weighted queue policy with dynamic weights. The weight function wf enables us to differentiate

between the flows, and gives higher priority to some flows, if desired. A flow with a higher weight

will be scheduled more often, and consequently its age should decrease. A lower ᾱf gives higher

priority to flow f .

Note that the quantity being optimized is different from the traditional maxweight metric,

which involves a backpressure term. Owing to the packet dropping in our system, the vector

Q(t) remains in a bounded set for all time t, and consequently, the system is always stable.

Hence, we do not use a maxweight formulation, which is used generally to guarantee stability

(within the capacity region of the system).

We will see in Section III that this policy is seen to yield a good performance in terms of

the average AoI metric. We compare it with multiple policies, and see the benefit of dropping

packets, even compared to policies which do LCFS. In the following section, we describe how

we may solve the optimization problem in a distributed manner.

110

5.2.2 Distributed Implementation

While the optimization (5.5) may be non-convex in general, in case of smaller state spaces, it

can be computed by a brute force search. For larger state spaces, it can be approximated by a

linear relaxation (relaxing the scheduling variables s to belong to the interval [0, 1] rather than

the set {0, 1}). The relaxed set of feasible vectors s will be denoted by S∗. The relaxed linear

program can be written in the form,

args max
∑
i,j,f

θ(i, j, f)sfij, (5.7)

s.t sfij ∈ [0, 1], ∀ i, j, f, (5.8)

where θ(i, j, f) = wfQf
i (t)R

f
ij, and Rf

ij = Rf
ij(H(t)) is the rate that is achievable for the link

(i, j) if it is transmitting at fixed power, and none of the links it interferes with is on. This is

now a separable linear program, and can then be solved in a distributed fashion.

One algorithm that can be used to solve it in a distributed fashion is the Incremental

Gradient Descent algorithm (IGD) [9]. Let K denote the set of all link-flow pairs, i.e., all

elements of the form ((i, j), f) where (i, j) ∈ E and f ∈ F. Then, IGD provides,

sn+1 = ΠS∗ [(sn + αvknθ(kn)sn], (5.9)

with kn = n modulo |K| + 1, α is a small positive number, vkn is a vector which is one at its

Kn-th position and is zero elsewhere, and ΠS∗ denotes projection onto the set S∗. Due to the

vector vkn , the update of the vector can be performed in a component wise manner. Thus,

one can perform the update in (5.9) in a cyclic manner, going from one element of K to the

next. What this would mean is that at each node, we can do the increment step in (5.9) for

all the links that originate at that node, and then move to a neighbour. This process then

continues cyclically. Thus, we can peform the optimization (5.7)-(5.8) in a distributed manner,

with messages passed between neighbouring nodes.

Since the power of transmission is fixed, and we assume that the channel gains take values

from a bounded set, it follows that the rates are bounded by some R̄. Further assume that the

weights wf are bounded by some w̄ ∈ R. Let us define,

F (s) =
∑
k∈K

θ(k)s(k), s ∈ S∗. (5.10)

Then, the following result from [9] holds.

111

Lemma 5.1 The iterates given by (5.9) result in a sequence of points {sn} ∈ S∗ which satisfy,

lim
n→∞

supF (sn) ≥ max
s∈S∗

F (s)− C,

where C = αw̄2R̄2|K|(4|K|+1)
2

.

Thus, we can choose α small enough to come close to the optimal value. Note that the algorithm

does not require that the age at the destination be available at every node having that flow

for computing the optimization. It is only necessary that it be known whether the age exceeds

a threshold or not. We can have mini slots at the beginning of each slot, during which the

destination node can broadcast a signal at a fixed power, to indicate whether the age has

exceeded a threshold. Absence of the signal would indicate that the age is below the threshold.

Using this simple signalling scheme, the one bit information corresponding to each flow can be

broadcast.

5.3 Simulation Results and Discussion

We compare the proposed policy, SDSPD, with five other policies. First, we have Backpressure

with Dropping (BP-D), which is the same as SDSPD, except that the optimization (5.5) is

replaced by,

s∗(t) = args∈S max
∑
i,j,f

Qij(t)R
f
ij(s,H(t)), (5.11)

where Qij = maxf (Qi − Qj)
+. This can be considered as a maxweight (backpressure) pol-

icy with dropping. There are two other variants of the SDSPD policy, which use the same

scheduling rule as SDSPD, but they do not drop packets. The first of these is SDSPnD-FCFS,

which has the FCFS service discipline, and the second, which has LCFS service, will be called

SDSPnD-LCFS. We also compare with BP-LCFS and BP-FCFS. which are backpresssure poli-

cies without dropping packets, with LCFS and FCFS service respectively. Finally we have the

randomized scheduling policy of [91], which is a randomized stationary policy, which solves an

optimization to obtain activation probabilities for links. Thus, it does not use instantaneous

state information. Comparing with all these schemes allows us to evaluate the performance of

the SDSPD algorithm against common scheduling schemes, some of which have been shown to

perform well in terms of age.

We consider two example networks. All simulations are run for 104 time slots, and averaged

over 100 such trials. For a theoretical comparison, we use the following lower bound on the age.

112

2

6
9

3

11

1

8

10

4

5

7

Figure 5.3: Example network 1.

5.3.1 An Approximate Lower Bound for Age

Consider a discrete time queue, with a Bernoulli arrival process, so that in each slot, a packet

arrives with probability p, and with probability 1−p, no packet arrives. Let X denote the time

between two packet arrivals. Clearly,

EX =
1

p
, EX2 =

2− p
p2

. (5.12)

The average age of the arrival process will be,

ᾱ =
EX2

2EX
=

2− p
2p

. (5.13)

If we assume that the channel takes values 0 or 1 with probability 1− q and q respectively, the

mean time between two time slots in which the channel state is 1, is 1
q
, and this adds to the

average age. Across a system of n such links, we can obtain a lower bound on average age as,

2− p
2p

+
n

q
. (5.14)

Observe that this is a loose bound, because it assumes that there is only one flow in the system.

In a system with multiple flows, we may be far away from this lower bound.

5.3.2 Example Network 1

The network considered in this example is given by Figure 5.3. The channel gains take value

0 or 1 with probability 0.5, in each slot. We will assume that if channel gain equals 1, exactly

113

one packet can be successfully transmitted. This models a situation where the channel is above

a threshold with probability 0.5, and hence ensures succesful transmission. The flows are from

node 1 to 5 (path 1 → 2 → 3 → 4 → 5), from node 6 to node 7 (path 6 → 2 → 3 → 4 → 7),

from node 8 to 10 (path 8 → 2 → 3 → 9 → 10), from node 11 to 9 (path 11 → 6 → 9) and

from node 11 to node 2 (path 11 → 6 → 2). The interference model assumes that any two

links that have a common node interfere, and therefore cannot be active simultaneously. All

weights wf in the optimization (5.5) are identically set to one (by choosing ᾱf =∞ for all f).

The arrival process is i.i.d Bernoulli across slots, with packet arrival rate 0.1 for all the flows.

Table 5.1 gives the value of average AoI obtained at the destination for each flow, for SDSPD,

SDSPnD-FCFS, SDSPnD-LCFS, BP-D, BP-FCFS, BP-LCFS and the stationary policy of [91],

as well as the loose lower bound (5.14). From the values in Table 5.1 it is easy to see that

Table 5.1: Average AoI for different flows under different policies, for the network in figure 5.3,
with arrival rates of all flows fixed at 0.1.

Flow
1→5

Flow
6→7

Flow
8→10

Flow
11→9

Flow
11→2

Lower Bound 17.5 17.5 17.5 13.5 13.5
SDSPD 22.2 20.1 19.2 14.6 17.4
BP-D 24.6 20.5 19.6 14.8 17.9
SDSPnD-LCFS 25.5 24.6 22.8 15.6 18.9
BP-LCFS 37.4 31.9 27.6 16.3 23.5
SDSPnD-FCFS 33.9 30.5 26.2 15.9 21.9
BP-FCFS 47.2 37.3 30.1 16.3 25.4
Policy of [91] 190.2 242.8 149.5 61.6 112.7

SDSPD is the best performing, and improves over the LCFS policy as well. The FCFS policy

performs decently, but the age performance of the FCFS policy will deteriorate as we increase

the arrival rates. The stationary policy of [91] performs an order worse than the other three,

because it does not take into account channel or buffer state information. For SDSPD, the

flows also have ages close to the lower bound. Recall that the lower bound was assuming a

single flow using up all the resources. Even with five flows in the network, SDSPD performs

quite close to the lower bound. The BP-D policy performs close to SDSPD. However, SDSPD

offers a slight improvement over BP-D, especially for the first flow.

We repeated the simulation for arrival rate 0.13 for all the flows. The values obtained are

given in Table 5.2. Here we see that the age performances of the non-dropping policies begin

to deteriorate, owing to congestion. The SDSPD and BP-D policies perform well. The age of

all the flows of the SDSPD system have reduced, when compared to Table 5.1. The policy is

able to utilize the higher rate of updates to reduce the overall age.

114

From the above two tables, it may seem that the policy of [91] has the worst performance.

Table 5.2: Average AoI for different flows under different policies, for the network in figure 5.3,
with arrival rates of all flows fixed at 0.13.

Flow
1→5

Flow
6→7

Flow
8→10

Flow
11→9

Flow
11→2

Lower Bound 15.2 15.2 15.2 11.2 11.2
SDSPD 21.2 18.4 17.3 12.5 16.2
BP-D 24.9 19.2 17.9 12.7 16.9
SDSPnD-LCFS 43.1 51.6 40.4 16.2 19.9
BP-LCFS 95.5 98.3 79.6 19.2 51.1
SDSPnD-FCFS 97.8 100.3 81.9 17.6 50.6
BP-FCFS 160.3 154.0 121.9 20.1 78.1
Policy of [91] 186.5 250.5 163.2 62.6 111.2

However, this is not true in general. As we increase the arrival rates further, we see that the

average AoI for the non dropping policies begin to blow up as expected, owing to congestion.

This can be seen in Table 5.3, which summarizes the average AoI values for the different

algorithms when arrival rate is 0.14. The BP-FCFS algorithm performs the worst.

The above results demonstrate that the SDSPD policy can give low average AoI, close to the

Table 5.3: Average AoI for different flows under different policies, for the network in figure 5.3,
with arrival rates of all flows fixed at 0.14.

Flow
1→5

Flow
6→7

Flow
8→10

Flow
11→9

Flow
11→2

Lower Bound 14.6 14.6 14.6 10.6 10.6
SDSPD 20.9 18.1 16.8 11.9 16.1
BP-D 25.1 18.9 17.5 12.2 16.9
SDSPnD-LCFS 184.7 195.8 181.2 17.5 21.3
BP-LCFS 251.1 259.6 234.3 21.6 132.6
SDSPnD-FCFS 388.7 396.1 371.9 19.7 200.8
BP-FCFS 408.9 409.2 368.3 23.5 247.8
Policy of [91] 199.1 264.4 163.8 65.8 102.2

lower bound. Next, we demonstrate how we can use the weights wf to reduce the average AoI

even further. This is done by fixing the ᾱf values in (5.6). The results are given in Table 5.4,

for the network in figure 5.3, with arrival rates of all flows fixed at 0.14. The first row gives the

values of average AoI without targets. In the second row, we fix a target of 18 for the first flow,

and obtain an average AoI of 17.3. In the next row, we set the target to be 15, and obtain an

average AoI of 16.7. Recall from Table 5.3 that the loose lower bound for AoI assuming that

115

Table 5.4: Average AoI for different flows under the SDSPD policy, for the network in figure
5.3, with arrival rates of all flows fixed at 0.14. First column gives the target age for each flow.
A ∗ indicates that the target is set to ∞ (i.e., no target).

Target average age ᾱf

for each flow
Flow
1→5

Flow
6→7

Flow
8→10

Flow
11→9

Flow
11→2

--*-*-* 20.9 18.1 16.8 11.9 16.9
18-*-*-*-* 17.3 19.6 17.7 12.0 16.4
15-*-*-*-* 16.7 20.3 18.0 12.0 16.6
15-*-*-*-11 16.7 21.6 18.3 12.7 12.3
-16--*-12 22.2 16.6 17.8 12.9 12.8

1 2

3

4 5

6

7

8

9

10 11

Figure 5.4: Example network 2.

only one flow is present was 14.6, and therefore 16.7 is a good value for average AoI. The AoI

of other flows is only marginally increased. In the next row, we set targets of 15 and 11 for

the first and last flows (with lower bounds 14.6 and 10.6 respectively), and obtain average AoI

values of 16.7 and 12.3. In the last row we set targets of 16 and 12 for the second and last flows,

respectively, and obtain 16.6 and 12.8 respectively. Thus, the algorithm can provide close to

optimal performance, and can prioritize some flows over others if necessary.

5.3.3 Example Network 2

The network considered in this example is given in Figure 5.4. The channel, arrival and interfer-

ence models are the same as in the previous example. The flows are 1→ 2→ 4→ 5→ 7→ 9,

3 → 2 → 4 → 8, 4 → 5 → 3 → 6 → 10 and 4 → 5 → 7 → 6 → 10 → 11. Table 5.5 depicts

values of Average AoI for the four flows, under the different policies considered.

116

Table 5.5: Average AoI for different flows under different policies, for the network in figure 5.4,
with arrival rates of all flows fixed at 0.1.

Flow
1→9

Flow
3→8

Flow
4→10

Flow
4→11

Lower Bound 19.5 15.5 17.5 19.5
SDSPD 25.9 17.5 20.5 20.6
BP-D 29.8 17.7 21.2 21.1
SDSPnD-LCFS 28.0 19.2 26.5 25.9
BP-LCFS 42.7 21.7 27.8 26.2
SDSPnD-FCFS 37.2 20.7 27.9 27.4
BP-FCFS 59.0 22.8 28.9 26.9
Policy of [91] 238.2 104.7 185.7 209.7

In this set of simulations too, we see that the patterns observed in the previous example

hold.

Table 5.6: Average AoI for different flows under different policies, for the network in figure 5.4,
with arrival rates of all flows fixed at 0.13.

Flow
1→9

Flow
3→8

Flow
4→10

Flow
4→11

Lower Bound 17.2 13.2 15.2 17.2
SDSPD 25.9 15.6 18.9 18.6
BP-D 32.1 15.9 20.1 19.3
SDSPnD-LCFS 28.8 20.3 48.5 47.2
BP-LCFS 83.1 35.4 55.4 56.1
SDSPnD-FCFS 79.9 32.4 55.9 58.5
BP-FCFS 179.6 49.5 66.0 68.4
Policy of [91] 231.9 101.7 178.7 204.7

5.3.4 Discussion

These experiments seem to suggest that dropping of packets locally at queues can help reduce

age. Moreover, we get a policy that is robust to arrival rate variation. Now it may be that

in certain applications, it is imperative to get all the packets from the source to the destina-

tion, without losing any information. In such cases one may use the SDSPnD-LCFS scheme,

which performs the best among all policies without packet dropping. The disadvantage of non-

dropping policies, however, is that in case of large arrival rates, the queues will be large, and

the time to move all the packets across, from source to destination, will be huge. If the arrival

rates are outside the stability region of the policy, this time may very well be not finite. In such

117

a case, it is not even feasible to get all the packets across. Moreover, as the queue lengths build

up, the complexity of optimizations used for resource allocation, may also increase. Against

all these, SDSPD offers a distinct advantage. Additionally, the dynamically varying weight

function allows us to obtain targeted age.

5.4 Conclusion

In this chapter, we have presented a control policy which reduces the average AoI in a multihop

wireless network. The control policy involves dropping of older packets at each queue, in favour

of the youngest packet, and using the queue lengths and channel gains at each link. This policy

is seen to perform better than policies without dropping, including LCFS schemes. Indeed,

in many cases the scheme of dropping packets offers a huge improvement over LCFS schemes.

It also performs much better than policies which do not use state information. Further, the

average age obtained by the proposed policy is quite close to a theoretical lower bound as well.

We further show that we can come even closer to the lower bound by using the age information

at the destination. For applications for which there is no need to get all packets across to the

destination, dropping of packets in the manner presented can help improve the performance in

terms of age. Not keeping a backlog of older packets reduces buffering requirements. Moreover,

there is no need to spend energy in transmitting packets which are not fresh. The network

capacity does not become a bottleneck in the transmission of fresh information. With packet

dropping, higher rates of arrivals of packets do not result in an increase in the age due to

queueing. We see a monotone decrease in the average age of different flows, as arrival rate

increases. What this suggests is that in systems with packet dropping, the network is no longer

a constraint on the optimal sampling rate. Thus, we can fix the sampling rate independent of

network considerations, and dependent only on the energy or other requirements of the sampler

at the source node.

118

Chapter 6

Conclusions and Future Directions

In this thesis, we have considered the problem of distributed control of a multihop wireless

network, with QoS provisions, under the SINR and graphical interference models.

In Chapter 2, we considered the problem of distributed control of a multihop network under

the SINR interference model. We proposed a randomized control policy which stabilized a frac-

tion of the capacity region. The policy was implemented in a distributed manner using gossip

algorithms. Further, it also gave targeted mean delay and hard deadline QoS to different flows,

by dynamically varying the probability with which nodes become transmitters and receivers.

This probability is a function of queue length as well as QoS. Flows that did not meet the QoS

requirements get a higher weight as compared to flows that did, and non QoS flows. By means

of simulations, we compare it with existing distributed policies, and see that it performs much

better. From the stability region expressions, as well as from simulations, we can see that there

is a tradeoff between stability and QoS. More the QoS that the system tries to provide, less is

the traffic that it is able to support with stability.

In Chapter 3, we considered the problem of distributed control of a multihop wireless network

under a graphical interference model. We proposed a control policy under the scheme of discrete

review. Here, control decisions are taken at only certain time epochs, known as review times,

by solving an optimization problem. The optimization problem was formulated using insights

from the notion of draining time in fluid networks. The control algorithm was a linear program,

which was then solved using Incremental Gradient Descent. This algorithm was implemented in

a distributed manner, using a distributed update and projection step. The convergence of the

distributed algorithm was also studied. The algorithm gave higher weights to flows with QoS

constraints that have not been met. The algorithm was able to provide targeted mean delay

and hard deadline QoS to flows. We also proposed a slightly modified optimization, which was

shown to be throughput optimal using fluid limit analysis. The modified algorithm was also

119

able to provide mean delay QoS.

In Chapter 4, we considered an algorithm similar to that of Chapter 3, but without the

discrete review assumption. This algorithm is also throughput optimal. The algorithm was

studied under the heavy traffic regime, under diffusion scaling. A sequence of scaled processes

was shown to converge to a reflected Brownian motion with drift. We also show that the

stationary distributions of these scaled processes converge to the stationary distribution of the

reflected Brownian motion with drift. Consequently, the stationary distribution of the limiting

process is a good approximation for the stationary distribution of the system under heavy

traffic. By means of simulations, we verify that these theoretical results are accurate.

In Chapter 5, we consider the problem of control of a multihop wireless network with average

age of information being the QoS. We present a control policy that involves dropping of older

packets at each queue, in favour of younger packets, and involves an optimization that uses

system state information. The algorithm is similar to the one proposed initially in Chapter

3. We demonstrate via simulations that the scheme offers improvement in average age over

most existing schemes, including those that do LCFS service, and those that do not make use

of state information. Comparing with a theoretical lower bound, we demonstrate that we are

able to come quite close to this in performance. Further, the scheme may also be used to give

dynamic priority to flows so as to give targeted average age to desired flows. Since we drop

packets, there is no congestion at the nodes. Consequently, network capacity does not become

a bottleneck for the rate at which update packets are generated. This is beneficial, since more

updates can now lead to lower age.

6.1 Future Directions

Throughout this work, we have assumed a fixed number of users, non-mobile, and with the

flows (number, source, destination) fixed from beginning to end. One could consider a mobile

scenario, with users arriving and leaving the system. Similarly there will be flows arriving,

getting served, and leaving. There have been very few theoretical studies of such systems. Such

a study would be a practically relevant extension of this work.

While the capacity region of the algorithm in Chapter 2 has a lower bound, it will be

interesting to see if there are any tight upper bounds to the same. This will be a cap on the

maximum achievable throughput of such a distributed randomized policy, and will characterize

the tradeoff between distributed and centralized implementation.

We used Little’s Law to connect mean delay and mean queue length, to formulate weights

for mean delay QoS in Chapter 3. What would be a suitable equivalent to characterize hard

deadlines? This remains an open question.

120

Whether a Brownian limit exists for a control policy under the discrete review setup of

Chapter 3 is an open question. It is likely that the scaling to obtain a limit for such a system

is different from the traditional diffusion scaling.

Obtaining better theoretical bounds on the age for multihop networks and characterizing

age optimal policies is a relevant future direction in the case of age QoS.

121

Bibliography

[1] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wireless sensor

networks. Ad hoc networks, 3(3):325–349, 2005. 35, 109

[2] Matthew Andrews, Krishnan Kumaran, Kavita Ramanan, Alexander Stolyar, Rajiv Vi-

jayakumar, and Phil Whiting. Scheduling in a queuing system with asynchronously vary-

ing service rates. Probability in the Engineering and Informational Sciences, 18(2):191–

217, 2004. 3, 61

[3] Krishna B Athreya and Soumendra N Lahiri. Measure theory and probability theory.

Springer Science & Business Media, 2006. 31, 64, 85, 94

[4] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.

Computer networks, 54(15):2787–2805, 2010. 1

[5] Irfan Awan, Muhammad Younas, and Wajia Naveed. Modelling qos in iot applications.

In 2014 17th International Conference on Network-Based Information Systems, pages

99–105. IEEE, 2014. 1

[6] Nicole Bäuerle. Optimal control of queueing networks: An approach via fluid models.

Advances in Applied Probability, 34(2):313–328, 2002. 4

[7] Ahmed M Bedewy, Yin Sun, and Ness B Shroff. Age-optimal information updates in mul-

tihop networks. In 2017 IEEE International Symposium on Information Theory (ISIT),

pages 576–580. IEEE, 2017. 7

[8] Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal methods for convex

optimization: A survey. Optimization for Machine Learning, 2010(1-38):3, 2011. 41, 44

[9] Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal methods for convex

optimization: A survey. Optimization for Machine Learning, 2010(1-38):3, 2011. 111

122

BIBLIOGRAPHY

[10] Dimitris Bertsimas, David Gamarnik, and John N Tsitsiklis. Stability conditions for

multiclass fluid queueing networks. IEEE Transactions on Automatic Control, 41(11):

1618–1631, 1996. 3

[11] Dimitris Bertsimas, Ebrahim Nasrabadi, and Ioannis Ch Paschalidis. Robust fluid pro-

cessing networks. IEEE Transactions on Automatic Control, 60(3):715–728, 2014. 4

[12] Michael Best. The wireless revolution and universal access. Trends in Telecommunications

Reform, pages 1–24, 2003. 1

[13] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 1968. 4,

74, 78

[14] Holger Boche and Slawomir Stanczak. Convexity of some feasible qos regions and asymp-

totic behavior of the minimum total power in cdma systems. IEEE Transactions on

Communications, 52(12):2190–2197, 2004. 6

[15] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A

nonasymptotic theory of independence. Oxford university press, 2013. 32

[16] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip

algorithms. IEEE/ACM Transactions on Networking (TON), 14(SI):2508–2530, 2006. 3

[17] Maury Bramson. State space collapse with application to heavy traffic limits for multiclass

queueing networks. Queueing Systems, 30(1-2):89–140, 1998. 5, 79, 92

[18] Maury Bramson. A stable queueing network with unstable fluid model. Annals of applied

probability, pages 818–853, 1999. 3

[19] Anton Braverman, JG Dai, and Masakiyo Miyazawa. Heavy traffic approximation for the

stationary distribution of a generalized jackson network: The bar approach. Stochastic

Systems, 7(1):143–196, 2017. 5

[20] Amarjit Budhiraja and Chihoon Lee. Stationary distribution convergence for generalized

jackson networks in heavy traffic. Mathematics of Operations Research, 34(1):45–56, 2009.

5, 82, 105

[21] Loc Bui, Atilla Eryilmaz, R Srikant, and Xinzhou Wu. Joint asynchronous congestion

control and distributed scheduling for multi-hop wireless networks. In Infocom, 2006. 3

123

BIBLIOGRAPHY

[22] Hong Chen. Fluid approximations and stability of multiclass queueing networks: work-

conserving disciplines. The Annals of Applied Probability, pages 637–665, 1995. 3

[23] Hong Chen and David D Yao. Dynamic scheduling of a multiclass fluid network. Opera-

tions Research, 41(6):1104–1115, 1993. 4

[24] Shigang Chen and Klara Nahrstedt. Distributed quality-of-service routing in ad hoc

networks. IEEE Journal on Selected areas in Communications, 17(8):1488–1505, 1999. 6

[25] Ying Cui, Vincent KN Lau, Rui Wang, Huang Huang, and Shunqing Zhang. A survey

on delay-aware resource control for wireless systems—large deviation theory, stochastic

lyapunov drift, and distributed stochastic learning. IEEE Transactions on Information

Theory, 58(3):1677–1701, 2012. 6

[26] Ying Cui, Edmund M Yeh, and Ran Liu. Enhancing the delay performance of dynamic

backpressure algorithms. IEEE/ACM Transactions on Networking (TON), 24(2):954–

967, 2016. 3

[27] Jim G Dai. On positive harris recurrence of multiclass queueing networks: a unified

approach via fluid limit models. The Annals of Applied Probability, 5(1):49–77, 1995. 3,

55

[28] Jim G Dai and Sean P Meyn. Stability and convergence of moments for multiclass

queueing networks via fluid limit models. IEEE Transactions on Automatic Control, 40

(11):1889–1904, 1995. 4, 5, 105

[29] Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications. Springer,

2010. 6

[30] Alexandros G Dimakis, Soummya Kar, José MF Moura, Michael G Rabbat, and Anna

Scaglione. Gossip algorithms for distributed signal processing. Proceedings of the IEEE,

98(11):1847–1864, 2010. 3

[31] Atilla Eryilmaz and Rayadurgam Srikant. Asymptotically tight steady-state queue length

bounds implied by drift conditions. Queueing Systems, 72(3-4):311–359, 2012. 5

[32] Serguei Foss and Artyom Kovalevskii. A stability criterion via fluid limits and its appli-

cation to a polling system. Queueing Systems, 32(1-3):131–168, 1999. 3

124

BIBLIOGRAPHY

[33] David Gamarnik and Assaf Zeevi. Validity of heavy traffic steady-state approximations

in generalized jackson networks. The Annals of Applied Probability, 16(1):56–90, 2006. 5

[34] Leonidas Georgiadis, Michael J Neely, and Leandros Tassiulas. Resource allocation and

cross-layer control in wireless networks. Foundations and Trends R© in Networking, 1(1):

1–144, 2006. 6

[35] Itai Gurvich. Validity of heavy-traffic steady-state approximations in multiclass queueing

networks: The case of queue-ratio disciplines. Mathematics of Operations Research, 39

(1):121–162, 2013. 5

[36] Allan Gut. Stopped random walks. Springer, 2009. 85

[37] Jean-Paul Haddad and Ravi R Mazumdar. Heavy traffic approximation for the stationary

distribution of stochastic fluid networks. Queueing Systems, 70(1):3–21, 2012. 5

[38] J Harrison. Brownian motion and stochastic flow systems. 1985. 4

[39] J Michael Harrison. The bigstep approach to flow management in stochastic processing

networks. Stochastic Networks: Theory and Applications, 4:147–186, 1996. 4

[40] J Michael Harrison. Heavy traffic analysis of a system with parallel servers: asymptotic

optimality of discrete-review policies. Annals of applied probability, pages 822–848, 1998.

4

[41] J Michael Harrison and Martin I Reiman. Reflected brownian motion on an orthant. The

Annals of Probability, 9(2):302–308, 1981. 4, 88

[42] Donald L Iglehart and Ward Whitt. Multiple channel queues in heavy traffic. i. Advances

in Applied Probability, 2(1):150–177, 1970. 4

[43] Bo Ji, Changhee Joo, and Ness B Shroff. Throughput-optimal scheduling in multihop

wireless networks without per-flow information. IEEE/ACM Transactions on Networking

(TON), 21(2):634–647, 2013. 4

[44] Changhee Joo and Atilla Eryilmaz. Wireless scheduling for information freshness and

synchrony: Drift-based design and heavy-traffic analysis. IEEE/ACM Transactions on

Networking (TON), 26(6):2556–2568, 2018. 7

125

BIBLIOGRAPHY

[45] Igor Kadota, Abhishek Sinha, and Eytan Modiano. Optimizing age of information in wire-

less networks with throughput constraints. In IEEE INFOCOM 2018-IEEE Conference

on Computer Communications, pages 1844–1852. IEEE, 2018. 7

[46] Clement Kam, Sastry Kompella, and Anthony Ephremides. Effect of message transmis-

sion diversity on status age. In 2014 IEEE International Symposium on Information

Theory, pages 2411–2415. IEEE, 2014. 7

[47] WN Kang, FP Kelly, NH Lee, and RJ Williams. State space collapse and diffusion

approximation for a network operating under a fair bandwidth sharing policy. The Annals

of Applied Probability, 19(5):1719–1780, 2009. 5

[48] Toshiyuki Katsuda. State-space collapse in stationarity and its application to a multiclass

single-server queue in heavy traffic. Queueing Systems, 65(3):237–273, 2010. 5

[49] Sanjit Kaul, Marco Gruteser, Vinuth Rai, and John Kenney. Minimizing age of informa-

tion in vehicular networks. In 2011 8th Annual IEEE Communications Society Conference

on Sensor, Mesh and Ad Hoc Communications and Networks, pages 350–358. IEEE, 2011.

7

[50] Sanjit Kaul, Roy Yates, and Marco Gruteser. Real-time status: How often should one

update? In 2012 Proceedings IEEE INFOCOM, pages 2731–2735. IEEE, 2012. 7

[51] Frank Kelly. Charging and rate control for elastic traffic. European transactions on

Telecommunications, 8(1):33–37, 1997. 6

[52] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate control for communication

networks: shadow prices, proportional fairness and stability. Journal of the Operational

Research society, 49(3):237–252, 1998. 6

[53] Joohwan Kim, Xiaojun Lin, and Ness B Shroff. Locally optimized scheduling and power

control algorithms for multi-hop wireless networks under sinr interference models. In

2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and

Wireless Networks and Workshops, pages 1–10. IEEE, 2007. 3

[54] John FC Kingman. On queues in heavy traffic. Journal of the Royal Statistical Society:

Series B (Methodological), 24(2):383–392, 1962. 5

126

BIBLIOGRAPHY

[55] Antzela Kosta, Nikolaos Pappas, and Vangelis Angelakis. Age of information: A new

concept, metric, and tool. Foundations and Trends R© in Networking, 12(3):162–259, 2017.

7

[56] PR Kumar and Sean P Meyn. Duality and linear programs for stability and performance

analysis of queuing networks and scheduling policies. IEEE Transactions on Automatic

Control, 41(1):4–17, 1996. 3

[57] Satya Kumar and Vinod Sharma. Joint routing, scheduling and power control providing

hard deadline in wireless multihop networks. In 2017 Information Theory and Applications

Workshop (ITA), pages 1–9. IEEE, 2017. 6

[58] V Satya Kumar, Lava Kumar, and Vinod Sharma. Energy efficient low complexity joint

scheduling and routing for wireless networks. In 2015 13th International Symposium on

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages

8–15. IEEE, 2015. 6

[59] Hyang-Won Lee, Eytan Modiano, and Long Bao Le. Distributed throughput maximiza-

tion in wireless networks via random power allocation. IEEE transactions on mobile

computing, 11(4):577–590, 2011. 3, 14, 19, 21, 22, 23, 24, 26, 33

[60] Bin Li and Rayadurgam Srikant. Queue-proportional rate allocation with per-link infor-

mation in multihop wireless networks. Queueing Systems, 83(3-4):329–359, 2016. 4

[61] Zhi-Quan Luo and Shuzhong Zhang. Dynamic spectrum management: Complexity and

duality. IEEE journal of selected topics in signal processing, 2(1):57–73, 2008. 6

[62] Constantinos Maglaras. Discrete-review policies for scheduling stochastic networks: Tra-

jectory tracking and fluid-scale asymptotic optimality. The Annals of Applied Probability,

10(3):897–929, 2000. 4, 37

[63] Athina P Markopoulou, Fouad A Tobagi, and Mansour J Karam. Assessment of voip

quality over internet backbones. In Proceedings. Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies, volume 1, pages 150–159. IEEE,

2002. 1

[64] Sean Meyn. Dynamic safety-stocks for asymptotic optimality in stochastic networks. In

2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601),

volume 4, pages 3930–3937. IEEE, 2004. 4

127

BIBLIOGRAPHY

[65] Sean Meyn. Control techniques for complex networks. Cambridge University Press, 2008.

4, 37

[66] Sean P Meyn. Transience of multiclass queueing networks via fluid limit models. The

Annals of Applied Probability, 5(4):946–957, 1995. 3

[67] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer-

Verlag, London, 1993. 81

[68] Masakiyo Miyazawa. Diffusion approximation for stationary analysis of queues and their

networks: a review. Journal of the Operations Research Society of Japan, 58(1):104–148,

2015. 5

[69] Elie Najm, Rajai Nasser, and Emre Telatar. Content based status updates. In 2018 IEEE

International Symposium on Information Theory (ISIT), pages 2266–2270. IEEE, 2018.

7

[70] Isidor Pavlovich Natanson. Theory of functions of a real variable. Frederick Ungar Pub-

lishing Co, New York, 1964. 56, 95

[71] Michael J Neely, Eytan Modiano, and Charles E Rohrs. Dynamic power allocation and

routing for time-varying wireless networks. IEEE Journal on Selected Areas in Commu-

nications, 23(1):89, 2005. 2, 16, 22, 23, 53

[72] Daniel P Palomar and Mung Chiang. Alternative distributed algorithms for network

utility maximization: Framework and applications. IEEE Transactions on Automatic

Control, 52(12):2254–2269, 2007. 6

[73] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014. 6

[74] Theodore S Rappaport. The wireless revolution. IEEE Communications Magazine, 29

(11):52–71, 1991. 1

[75] Walter Rudin. Principles of mathematical analysis. McGraw-hill New York, 1964. 81

[76] Aleksandr Nikolaevich Rybko and Alexander L Stolyar. Ergodicity of stochastic processes

describing the operation of open queueing networks. Problemy Peredachi Informatsii, 28

(3):3–26, 1992. 3

128

BIBLIOGRAPHY

[77] Walid Saad, Mehdi Bennis, and Mingzhe Chen. A vision of 6g wireless systems: Applica-

tions, trends, technologies, and open research problems. arXiv preprint arXiv:1902.10265,

2019. 1

[78] Devavrat Shah. Gossip algorithms. Foundations and Trends R© in Networking, 3(1):1–125,

2009. 3, 17, 22

[79] Devavrat Shah and Damon Wischik. Switched networks with maximum weight poli-

cies: Fluid approximation and multiplicative state space collapse. The Annals of Applied

Probability, 22(1):70–127, 2012. 4

[80] Devavrat Shah, NC David, and John N Tsitsiklis. Hardness of low delay network schedul-

ing. IEEE Transactions on Information Theory, 57(12):7810–7817, 2011. 6

[81] Tejal Shah, Ali Yavari, Karan Mitra, Saguna Saguna, Prem Prakash Jayaraman, Fethi

Rabhi, and Rajiv Ranjan. Remote health care cyber-physical system: quality of service

(qos) challenges and opportunities. IET Cyber-Physical Systems: Theory & Applications,

1(1):40–48, 2016. 1

[82] Sanjay Shakkottai and Alexander L Stolyar. Scheduling for multiple flows sharing a

time-varying channel: The exponential rule. Translations of the American Mathematical

Society-Series 2, 207:185–202, 2002. 3

[83] Vinod Sharma, D Prasad, and Eitan Altman. Opportunistic scheduling of wireless links.

Managing Traffic Performance in Converged Networks, pages 1120–1134, 2007. 3

[84] Changyang She and Chenyang Yang. Energy efficiency and delay in wireless systems: Is

their relation always a tradeoff? IEEE Transactions on Wireless Communications, 15

(11):7215–7228, 2016. 6

[85] Rahul Singh and PR Kumar. Throughput optimal decentralized scheduling of multihop

networks with end-to-end deadline constraints: Unreliable links. IEEE Transactions on

Automatic Control, 64(1):127–142, 2018. 6

[86] Eleni Stai, Symeon Papavassiliou, and John S Baras. Performance-aware cross-layer

design in wireless multihop networks via a weighted backpressure approach. IEEE/ACM

Transactions on Networking, 24(1):245–258, 2014. 6

129

BIBLIOGRAPHY

[87] Alexander L Stolyar. On the stability of multiclass queueing networks: a relaxed sufficient

condition via limiting fluid processes. Markov Processes and Related Fields, 1(4):491–512,

1995. 3

[88] Alexander L Stolyar. Maxweight scheduling in a generalized switch: State space collapse

and workload minimization in heavy traffic. The Annals of Applied Probability, 14(1):

1–53, 2004. 5, 79, 97, 98, 99, 101

[89] Alexander L Stolyar. Tightness of stationary distributions of a flexible-server system in

the halfin-whitt asymptotic regime. Stochastic Systems, 5(2):239–267, 2015. 5

[90] Vijay G Subramanian and Douglas J Leith. Draining time based scheduling algorithm.

In 2007 46th IEEE Conference on Decision and Control, pages 1162–1167. IEEE, 2007.

4

[91] Rajat Talak, Sertac Karaman, and Eytan Modiano. Distributed scheduling algorithms for

optimizing information freshness in wireless networks. In 2018 IEEE 19th International

Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages

1–5. IEEE, 2018. 7, 112, 114, 115, 117

[92] Chee Wei Tan, Mung Chiang, and Rayadurgam Srikant. Fast algorithms and performance

bounds for sum rate maximization in wireless networks. IEEE/ACM Transactions on

Networking (TON), 21(3):706–719, 2013. 6

[93] Leandros Tassiulas. Linear complexity algorithms for maximum throughput in radio

networks and input queued switches. In Proceedings. IEEE INFOCOM’98, the Confer-

ence on Computer Communications. Seventeenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Gateway to the 21st Century (Cat. No. 98,

volume 2, pages 533–539. Ieee, 1998. 3

[94] Leandros Tassiulas and Anthony Ephremides. Stability properties of constrained queueing

systems and scheduling policies for maximum throughput in multihop radio networks.

IEEE Transactions on Automatic Control, 31(12), 1992. 2

[95] Tolga Tezcan and JG Dai. Dynamic control of n-systems with many servers: Asymptotic

optimality of a static priority policy in heavy traffic. Operations Research, 58(1):94–110,

2010. 5

[96] John Von Neumann. Functional operators. Volume II, The Geometry of orthogonal spaces.

Princeton University Press, 1950. 42

130

BIBLIOGRAPHY

[97] Pradeep Chathuranga Weeraddana, Marian Codreanu, Matti Latva-aho, Anthony

Ephremides, and Carlo Fischione. Weighted sum-rate maximization in wireless networks:

A review. Foundations and Trends R© in Networking, 6(1–2):1–163, 2012. 6, 9, 14, 39

[98] Ward Whitt. Stochastic-process limits: an introduction to stochastic-process limits and

their application to queues. Springer Science & Business Media, 2002. 3, 4, 78

[99] Ruth J Williams. Diffusion approximations for open multiclass queueing networks: suf-

ficient conditions involving state space collapse. Queueing systems, 30(1-2):27–88, 1998.

4

[100] Roy D Yates and Sanjit K Kaul. Status updates over unreliable multiaccess channels.

In 2017 IEEE International Symposium on Information Theory (ISIT), pages 331–335.

IEEE, 2017. 7

[101] Roy D Yates and Sanjit K Kaul. The age of information: Real-time status updating by

multiple sources. IEEE Transactions on Information Theory, 65(3):1807–1827, 2019. 7

[102] Heng Qing Ye and Hong Chen. Lyapunov method for the stability of fluid networks.

Operations Research Letters, 28(3):125–136, 2001. 4

[103] Heng-Qing Ye and David D Yao. Diffusion limit of fair resource control—stationarity and

interchange of limits. Mathematics of Operations Research, 41(4):1161–1207, 2016. 5

[104] Gil Zussman, Andrew Brzezinski, and Eytan Modiano. Multihop local pooling for dis-

tributed throughput maximization in wireless networks. In IEEE INFOCOM 2008-The

27th Conference on Computer Communications, pages 1139–1147. IEEE, 2008. 3

131

	Acknowledgements
	Abstract
	Publications from the Thesis
	Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Notation
	1 Introduction
	1.1 Related Work
	1.2 System Model
	1.3 Contributions and Organization

	2 Joint Power Allocation, Routing and Scheduling under the SINR model
	2.1 System Model
	2.2 Capacity Region
	2.3 A Distributed Scheme Providing QoS
	2.3.1 Gossip Algorithm

	2.4 Performance Analysis
	2.5 Simulation Results
	2.6 Conclusion
	2.A Proof of Lemma 2.1
	2.B Proof of Lemma 2.2
	2.C Proof of Lemma 2.3

	3 A Distributed Draining Time Based Scheduling Algorithm with Graphical Interference Constraints
	3.1 System Model
	3.2 Discrete Review
	3.2.1 An Optimization based on Draining Time
	3.2.2 Optimization at Review Times
	3.2.3 Providing Quality-of-Service

	3.3 Distributed Optimization
	3.3.1 Incremental Gradient Ascent
	3.3.2 Projection
	3.3.3 Convergence
	3.3.4 Algorithm Description

	3.4 Simulation Results
	3.5 Throughput Optimal Algorithm
	3.5.1 An Alternate Representation

	3.6 Capacity Region and Rate Region
	3.7 Fluid Limit
	3.8 Simulation Results
	3.9 Conclusion

	4 Diffusion Approximation and Convergence of Stationary Distributions
	4.1 System Model
	4.2 Fluid Limit and Stability
	4.2.1 Draining Time

	4.3 Diffusion Scaling and Heavy Traffic Limit
	4.3.1 Convergence of n
	4.3.2 Convergence of n

	4.4 Convergence of Stationary Distributions
	4.5 Numerical Simulations
	4.6 Conclusion
	4.A Proof of Lemma 4.6
	4.B Proof of Lemma 4.7
	4.C Proof of Theorem 4.2
	4.9.1 Proof of the properties of

	4.D Proof of (4.74)
	4.E Proof of (4.79)

	5 Minimizing Age in a Multihop Wireless Network
	5.1 Age of Information
	5.2 System Model and Problem Formulation
	5.2.1 Control Policy
	5.2.1.1 Service Discipline
	5.2.1.2 Optimization Rule

	5.2.2 Distributed Implementation

	5.3 Simulation Results and Discussion
	5.3.1 An Approximate Lower Bound for Age
	5.3.2 Example Network 1
	5.3.3 Example Network 2
	5.3.4 Discussion

	5.4 Conclusion

	6 Conclusions and Future Directions
	6.1 Future Directions

	Bibliography

