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Abstract—We consider a multihop wireless network. There
are multiple source destination pairs. We propose a scheduling
algorithm to provide end-to-end mean delay guarantees to the
flows. We demonstrate that the algorithm is also throughput op-
timal. Under heavy traffic, we obtain a Brownian approximation
of the network. Furthermore, we also show that the stationary
distribution of the scaled process of the network converges to
that of the Brownian limit, providing an approximation to the
stationary distribution under heavy traffic. Finally simulations
further verify our claims.

Index Terms—Fluid Limit,Diffusion Approximation,Multihop
Network,Convergence of Stationary Distributions

I. INTRODUCTION & LITERATURE REVIEW

AMultihop wireless network consists of nodes communi-
cating to each other over a wireless medium. The data

generated at a source node, may have to travel across multiple
nodes before reaching its destination. These data flows have
different Quality-of-Service (QoS) requirements, depending
on the application which generated them. These requirements
include guarantees on the mean end-to-end delay, hard bounds
on the delay deadline and stability. To design scheduling
algorithms that meet these varying QoS demands, is a complex
problem.

Flows in a network may arise from various applications,
each requiring its specific form of QoS. The coming together
of different kinds of data, both human and machine generated,
sent over a common network, is central to the idea of the
Internet of Things (IoT) [1]. Applications using Voice over
IP (VoIP) are sensitive to delay variations in the network [2].
Remote healthcare systems, which involve collecting data from
a patient in a remote location and transmitting it elsewhere to
be analysed, require delay QoS guarantees to ensure timely
interventions [3].

Stability is a minimum QoS requirement that many appli-
cations seek. Algorithms are said to be throughput optimal
if they stabilize all the network queues for all arrival rates
within the capacity region [4], [5]. The class of backpressure
based maxweight algorithms is throughput optimal. In [6], a
joint power control, scheduling and routing algorithm using
backpressure is shown to be throughput optimal using Lya-
punov drift based arguments. To improve delay performance,
one may incorporate weights into the backpressure based
optimization formulation [7]. In general, however, they may
not yield good performance in terms of delay [8].
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A popular approach in the control of networks is to use
solutions from the theory of Markov Decision Processes
(MDPs). In [9], the authors decompose an optimization to
packet level to optimize delay. In [10], the algorithm optimizes
the sum of the product of the rate and a value function. The
algorithm is shown to be delay optimal in the asymptotic
regime of slot length going to zero. An alternate approach,
in the large queue length regime, is to transform delay
requirements of flows to effective bandwidth and effective
delay, given by large deviations theory. This transforms delay
requirements into equivalent physical optimization problems.
However, these approximations are easier for single hop, than
multihop systems, because the coupling between queues is
more complex [11]. A MAC layer algorithm to provide QoS
to different users, using a priority scheme, is studied in [12].
Here, multiple users are connected to a single base station,
and priority is provided based on channel and service status.
The problem of minimizing power while providing mean and
hard delay guarantees is studied in [13].

While the direct analysis of queueing networks can be a
hard problem, one may look at various scaling regimes to
obtain useful insights. In [14], [15], the authors used the
technique of fluid limit analysis to study network performance
and establish sufficient conditions for stability of the network.
A sequence of scaled networks is studied, and its (fluid) limit
yields insights about the performance of the original system.
In [16], it is shown that the stability of the fluid limit implies
the positive recurrence of the Markov chain corresponding
to the original unscaled system. In [17], the authors provide
ufficient conditions for obtaining bounds on the steady state
moments of queue lengths in a multiclass queueing network.
Optimizing the fluid equivalent of a cost function is studied
in [18]. The technique of discrete review is used in [19].
Here, the network is viewed at certain review instants, and
control decisions are taken till the next review instant using
information from the current state. A distributed algorithm
that provides mean delay and hard deadline guarantees in
a multihop network, in a discrete review set-up, is studied
in [20]. The resource allocation uses (approximate) draining
time of the fluid network to compute its optimal policy.
A throughput optimal algorithm that provides mean delay
guarantees is presented in [21]. In [22] a throughput optimal,
per-queue based scheduling algorithm is presented.

Diffusion approximations of networks is the study of queue-
ing systems scaled to reveal asymptotics corresponding to the
Functional Central Limit Theorem (FCLT) [23]. The networks
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are scaled while simultaneously increasing the traffic intensity
to the boundary of capacity. This is called the Heavy Traffic
regime [24]. A reflected Brownian motion is obtained as a
weak limit of a sequence of processes. This process provides
approximations for different statistics, such as mean delay
and queue length. Sufficient conditions for the existence of
a diffusion limit for multiclass queueing networks are given
in [25]. This assumes a work conserving service policy, i.e.,
the queues are never idle when a customer is present. In the
case of the network studied in [26], work conservation holds
only asymptotically. The techniques in [27] are used therein to
demonstrate state space collapse. Approximations for queues
in heavy traffic is given in [28].

The diffusion limit has a stationary distribution, which is
easier to calculate than the stationary distribution of the actual
system. This provides an approximation for various system
statistics of interest, such as mean queue length and delay.
Earlier papers on diffusion approximation did not provide
convergence of stationary distributions. The first paper to do so
seems to be [29] for general Jackson networks. They obtain
convergence under the assumption that the inter-arrival and
service times have exponential moments. In [30], convergence
is shown under weaker assumptions, using techniques refined
from [17]. The same problem is solved in [31] for multiclass
queueing networks. In [32], the authors justify the heavy traffic
diffusion approximation by showing convergence of moment
generating functions (MGF) of the stationary distributions of
diffusion scaled processes. using the basic adjoint relationship
and bypassing the intermediate step of showing the existence
of the diffusion process.

Our main contributions in this work are summarized below.
• We propose a new scheduling algorithm to guarantee

end-to-end mean delay for different traffic flows, in a
wireless multihop network. The delay guarantees are
implemented by a dynamic weight function which in-
corporates feedback. Using fluid limit analysis of the
system, we demonstrate that it is throughput optimal.
This is a slight variation of our algorithm proposed in
[21]. The main difference is that [21] assumes a discrete
review set-up, and hence the optimization is performed
only at certain review instants. In the current work we
do not make such an assumption. The performance of
the present algorithm is similar to that in [21] as seen
from simulations, and has the same fluid limit. Works
that provide for targeted end-to-end mean delay are not
commonly available in the literature.

• We obtain a reflected Brownian motion (with drift) as
the weak limit of the system under diffusion scaling in
the heavy traffic regime, and show that the stationary
distribution of our network converges to the stationary
distribution of this Brownian motion. This allows us to
approximate the stationary distribution of our network by
that of the Brownian limit, which is explicitly available.
For this we use properties of the fluid limit, unlike the
techniques in [30] which seem difficult to use in our case.
Convergence of stationary distributions to the diffusion
limit for a complex system with fading and end-to-end
QoS guarantees has not been demonstrated previously.

• In the literature, there have been works regarding through-
put optimality of maxweight type algorithms in networks
[4], [6]. The knowledge of fluid limits has enhanced our
understanding of these algorithms, through works such
as [26]. The study of diffusion approximations to obtain
queue length approximations also has along history, while
studies on converegence of stationary distribution are far
more recent [30]. To the best of our knowledge, this is the
first work to provide a throughput optimal algorithm with
end-to-end mean delay guarantee, obtains the diffusion
approximation and convergence of stationary distribution
to that of the approximation is demonstrated. In [21],
diffusion approximation, and hence the theoretical ap-
proximation of the performance of the algorithm was not
obtained.

A. Organization of this paper

This paper is organized as follows. In Section II, we describe
the system model, and the optimization used for resource
allocation. In Section III, we obtain the fluid limit of the
system, and demonstrate throughput optimality. In Section IV,
we obtain the diffusion scaled limit of the system in the heavy
traffic regime. In Section V, we show the convergence of the
stationary distributions of the sequence of diffusion scaled
systems. In Section VI, we provide the numerical results and
simulations, followed by concluding remarks in Section VII.

B. Notational Convention

We denote the set of real numbers by R, positive reals by
R+ and integers by Z. We use �[0,∞) the set of all right
continuous functions with left limits (RCLL) from [0,∞) to
R. We use

ℒ→ to denote weak convergence. For a real vector
G, | |G | | denotes its Euclidean norm. For a real number G, we
use G+ = max(G, 0), and |G | is its modulus. For a set � ⊂ R,
�+ denotes � ∩ R+. The vector of variables of the form G

9

8

over all 8 ∈ I and 9 ∈ J will be denoted by (G 9
8
)8∈I, 9∈J . If

G is the vector (G 9
8
)8∈I, 9∈J , and we have a sequence G= with

scaling parameter =, the components of the scaled vectors will
be represented as G 9 ,=

8
. The inner product of two vectors G and

H is 〈G, H〉. We use s.t. to denote such that. Union of sets is
denoted by ∪.

II. SYSTEM MODEL

We consider a multihop wireless network (see Fig. 1),
represented by a graph G = (V, E) where V = {1, 2, .., #} is
the set of vertices and E, the set of links (edges) on + . The
links are directional, with (8, 9) representing a link from node 8
to node 9 . The system evolves in slotted time, C ∈ {0, 1, 2, ...}.
Associated with each link is a time varying channel gain,
�8 9 (C). The channel vector is � (C), defined as the vector of all
�8 9 (C). We will assume that the channel vector evolves i.i.d.
across time, taking values from a finite set H with distribution
W = (W1 ... W |H |), where W8 is the probability that channel
state takes the 8-th value from the set H . Associated with this
graph is a set of flows F . Each flow corresponds to a stream
of packets being generated at a source node to be transmitted
to a destination node. For simplicity, we assume that packets
have a size of one bit. We also assume that the flows have
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Fig. 1. A simplified depiction of a Wireless Multihop Network
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Fig. 2. Example network

fixed paths, from source to destination. For a flow 5 ∈ F , let
BA2( 5 ) denote its source node, and 34B( 5 ) its destination. For
a flow 5 ∈ F , let �des( 5 )

src( 5 ) (C) denote the number of packets of
flow 5 generated at the source node at time C. This is called an
arrival process. Denote the vector of all such arrival processes
by �(C).

Depending on the physical constraints of the system, the
wireless links will have interference constraints. These in turn
determine L, the set of activation sets of a network. An
activation set is a set of links which can be ON simultaneously,
i.e., they do not violate the system interference constraints.
Consider the network in Fig 2, with four links. One can have
different interference constraints on this system, depending on
the communication protocol. An example is the case where
all links use the same frequency band and are close to each
other. Here, L consists of {ℓ1}, {ℓ2}, {ℓ3} and {ℓ4}. In another
scenario it may be that no two links that have a common
node can be ON simulatneously. This is a half-duplex type
constraint. Here, L contains {ℓ1, ℓ3}, {ℓ2, ℓ4}, {ℓ1}, {ℓ2}, {ℓ3}
and {ℓ4}. In this work, we assume that L is nonempty, and that
each link of the network belongs to at least one activation set
in L. This ensures that all communication paths exist. We do
not require any other assumption on the interference structure
of L.

Each activation set can also be represented by an activation
vector. This is a vector []8 9 ](8, 9) ∈E of length E, with each
element corresponding one-to-one with a link. The value of
that element is one if the link belongs to that activation set,
and zero otherwise. Thus, one generates from L, the set of all
activation vectors, L0. A schedule e = [e 5

8 9
](8, 9) , 5 is a vector

whose components take value 0 or 1. If e 5
8 9
= 1, it means

that bits of flow 5 are to be sent over link (8, 9). Further,
for any schedule e, there must exist an activation vector ] ∈
L0 such that,

∑
5 e

5

8 9
≤ ]8 9 . This ensures that the schedule

is feasible, i.e., there exists an activation set which enables
this schedule. Let S, the set of such feasible schedules that
additionally satisfy

∑
5 e

5

8 9
≤ 1 (only one flow to be sent over

a link at a time). We assume there exists a rate function `,
that assigns channel rates to each link in every time slot. When
the channel state is ℎ ∈ H and the schedule e ∈ S is chosen,
the rate function `(� (C), e), assigns a rate `8 9 (� (C), e) to a
link (8, 9). Note that `8 9 (ℎ, e) = i8 9 (ℎ), where i is some
achievable rate function (for some fixed transmit power).

At each node, packets present are sorted into queues, with
a first-in-first-out priority, for each flow. Let & 5

8
(C) denote the

number of packets of flow 5 queued at node 8. The vector of
all & 5

8
(C), over all nodes and flows, is denoted by &(C).

At each time instant, a network controller must decide to
transmit packets contained in the queues, across links, over
the network. Any such control decision can be interpreted as
deciding the values of a vector ((C) = [( 5

8 9
(C)](8, 9) , 5 . Here,

(
5

8 9
(C) denotes the number of bits of flow 5 transmitted from

node 8 to node 9 at time C. Clearly, ((C) must obey some
natural constraints. Since we cannot transmit more packets
from a queue than what we have,

∑
9 (

5

8 9
C ≤ & 5

8
(C). Moreover,

the number of bits we can send will be constrained by the
maximum channel rates available to us. These rates will
depend on the channel vector, as well as the interference
contraints between different links. Given a control decision
((C), the queues evolve as,

&
5

8
(C + 1) = & 5

8
(C) + � 5

8
(C) +

∑
:

(
5

:8
(C) −

∑
9

(
5

8 9
(C), (1)

where 8 ≠ 34B( 5 ). Define,

'
5

8
(C) =

∑
:≠8

(
5

:8
(C), � 5

8
(C) =

∑
9≠8

(
5

8 9
(C). (2)

These denote the net inflow and outflow from a queue, by
routing. Let '(C) and � (C) denote the vectors [' 5

8
(C)]8∈V , 5 ∈F

and [� 5

8
(C)]8∈V , 5 ∈F respectively. Then we have the queueing

equation in vector notation,

&(C + 1) = &(C) + �(C) + '(C) − � (C). (3)

If a rate `8 9 is available across a link (8, 9), it can be
allocated to one of the flows over that link. Such an allocation
vector is represented by ˆ̀ = ( ˆ̀ 5

8 9
)(8, 9) ∈E, 5 ∈F , where the ˆ̀ 5

8 9

are non negative and satisfy
∑
5 ∈F ˆ̀ 5

8 9
≤ `8 9 , ∀(8, 9) ∈ E. Let

Ũ(`(ℎ, e)) be the set of all allocations corresponding to a
rate vector `(ℎ, e), and let U(ℎ) = ∪e ∈SŨ(ℎ, e). We define
the optimal allocation at time C, ˆ̀∗ (C), as

ˆ̀∗ (C) = arg ˆ̀ ∈U(� (C)) max
∑

(8, 9) ∈E, 5 ∈F
U(& 5 (C), & 5 )& 5

8 9
(C) ˆ̀ 5

8 9
,

(4)

assuming &
5

8 9
> 0 for at least one link flow pair (8, 9), 5 .

If all & 5

8 9
are zero, we define the solution to be ˆ̀ 5

8 9
(C) = 0,

for all 8, 9 , 5 . The optimal schedule e∗ (C) is that e such that
ˆ̀∗ ∈ Ũ(`(� (C), e)), with ties broken arbitrarily.

In (4), we optimize a weighted sum of rates, with more
weight given to flows with larger backlogs, with U capturing
the delay requirement of the flow. The weights U are functions
of & 5 (C), and &

5
denotes a desired value for the queue length
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of flow 5 , which is determined by the end-to-end mean delay
requirement of flow 5 . We use,

U(& 5 (C), & 5 ) = 1 + 01

1 + exp(−02 (& 5 (C) −& 5 ))
. (5)

Thus, flows requiring a lower mean delay would have a higher
weight compared to flows needing a higher mean delay. Flows
whose mean delay requirements are not met should get priority
over the other flows. The &

5
are chosen, using Little’s Law,

as &
5
= _ 5 g 5 , where g 5 is the target end to end mean delay

and _ 5 is the arrival rate of flow 5 . Note that we will often
use U(G) instead of U(G, Ḡ) for simplicity of notation.

We define,Mℎ = {`(ℎ, e) : e ∈ S}. LetMℎ be the convex
hull of Mℎ , and M =

∑
ℎ∈H WℎMℎ . The capacity region,

which is the set of all arrival rates for which a stabilizing
policy exists, is defined below.

Definition II.1. The capacity region, Λ, is the set of all arrival
rate vectors _ for which there exists a non-negative vector
s = [s 5

8 9
](8, 9) ∈E, 5 ∈F which satisfies,

s
5

88
= 0, ∀8, 5 , s8

8 9 = 0, ∀8, 9 , 5 , (6)

_
5

8
≤

∑
9

s
5

8 9
−

∑
:

s
5

:8
, ∀8, 5 , (7)∑

5

s
5

8 9
≤ <8 9 , for some < ∈ M . (8)

We define the rate region W as follows.

W = {s : ∃< ∈ M B.C.
∑
5

s
5

8 9
≤ <8 9 , ∀8, 9}. (9)

The rate region W is the set of all feasible rate vectors, i.e,
all rates s for which there exists a schedule that achieves it.

In the next section we show that the present algorithm is
throughput optimal in the sense that if there is any other
algorithm that will stabilise the network for given traffic and
channel statistics, then this algorithm will. This is done by
obtaining the fluid limit of the system.

III. FLUID LIMIT

For any process ! (C) evolving in discrete time, define its
cumulative form, !̆ (C) :=

∑C
g=1 ! (C). Thus, we obtain �̆(C),

(̆(C), '̆(C) and �̆ (C), as the time cumulated �(C), ((C), '(C)
and � (C) respectively. Let �̆ℎ (C) denote the number of slots
till time C that the channel state was ℎ ∈ H . The vector
[�̆ℎ (C)]ℎ∈H will be denoted by �̆ (C). Let �̆ℎeˆ̀ (C) denote the
cumulative number of slots till time C when channel state was
ℎ, the schedule chosen was e and the allocation vector was
ˆ̀. It will be assumed that the possible allocations ˆ̀ forms a
finite set. It follows that,∑̀̂

, e

�̆
ℎe

ˆ̀ (C) = �̆ℎ (C). (10)

We have,

&(C) = &(0) + �̆(C) + '̆(C) − �̆ (C). (11)

Define the system state to be . (C) = &(C). From the queue
evolution (3) and the allocation, it is clear that the system . (C)

evolves as a discrete time countable state Markov chain. The
associated norm is | |. (C) | | = ∑

8, 5 &
5

8
. Positive recurrence of

this Markov chain would imply stability. We will show the
positive recurrence of this Markov process via its fluid limit.

Define the process / (C) =

( �̆(C), �̆ (C), �̆ (C), �̆ (C), '̆(C), (̆(C), &(C)). Let / = {/ (C), C ≥
0} and . = {. (C), C ≥ 0}. For the components of the process
/ (C), define the corresponding scaled (continuous time)
processes indexed by =, for C ≥ 0,

0= (C) = �̆(b=Cc)
=

, 4= (C) = �̆ (b=Cc)
=

, 6= (C) = �̆ (b=Cc)
=

,

3= (C) = �̆ (b=Cc)
=

, A= (C) = '̆(b=Cc)
=

, B= (C) = (̆(b=Cc)
=

,

@= (C) = &(b=Cc)
=

.

Thus we obtain I= (C) =

(0= (C), 4= (C), 6= (C), 3= (C), A= (C), B= (C), @= (C)). Let I= denote
{I= (C), C ≥ 0}. Note that, I= = (0=, 4=, 6=, 3=, A=, B=, @=).
The term fluid limit denotes the limits obtained as we scale
=→∞ for this process.

We will use the following definition.

Definition III.1. A sequence of functions b= is said to con-
verge uniformly on compact sets (u.o.c) if b= → b uniformly
on every compact subset of the domain.

Now we show the existence of a fluid limit for the scaled
sequence of processes {I=, = ≥ 0}.

Theorem III.1. Consider a sequence of scaled systems
{I=, = ≥ 0} such that the initial condition | |&(0) | | = = in the
=-th system. Then, for almost every sample path l, there exists
a subsequence =: (l) → ∞ such that, along this subsequence,
I= → I, where I = (0, 4, 6, 3, A, B, @). The component functions
of I= converge to the respective component functions of I
u.o.c. as well. The limiting functions are Lipschitz continuous,
and hence almost everywhere differentiable, and satisfy the
following properties for all C ≥ 0.

0(C) = _C, 4(C) = WC, (12)

A
5

8
(C) =

∑
:≠8

B
5

:8
(C), 3

5

8
(C) =

∑
9≠8

B
5

8 9
(C), (13)

@
5

8
(C) = @ 5

8
(0) + 0 5

8
(C) + A 5

8
(C) − 3 5

8
(C), (14)

¤@ 5
8
(C) = _ 5

8
+ ¤A 5

8
(C) − ¤3 5

8
(C), (15)∑

� , ˆ̀
6ℎ�ˆ̀ (C) = 4ℎ (C), | |@(0) | | ≤ 1, (16)

B
5

8 9
(C) =

∫ C

0
¤B 5
8 9
(g)3g, (17)

where ¤B(C) satisfies∑
8, 9 , 5

U(@ 5 (C))@ 5
8 9
(C) ¤B 5

8 9
(C) = max

s∈W

∑
8, 9 , 5

U(@ 5 (C))@ 5
8 9
(C)s 5

8 9
,

(18)
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where the dot indicates derivative, at regular C (the points
where the function is differentiable).

The proof is provided in appendix A. Denote the vector of
all @ 5

8
(C) by @(C).

The following theorem establishes the stability of the queues
under the our policy.

Theorem III.2. The control policy defined in (4), stabilizes
the process {&(C), C ≥ 0} for all arrivals in the interior of Λ.

The proof uses the fluid limit of the queue process, and is
provided in appendix B.

Draining time g3A08= is defined as the time by which the
fluid queue @(C) has norm zero. We have the following result,
which relates the draining time to the time ) obtained in the
proof of Lemma III.2. This result will be used subsequently,
in section V. (For proof see appendix C)

Lemma III.3. If the fluid limit satisfies | |@(0) | | ≤ X1 < 1, we
have g3A08= ≤ )

1−X1
.

The fluid limit gives insights into the stability properties
of the system. However, it only proves the existence of a
stationary distribution. To predict the behaviour of the system,
one needs the stationary distribution, or some approximation
to it. However, explicitly computing the stationary distribution
for our system is not feasible. Thus we define the heavy traffic
regime, and the associated diffusion scaling, below. We will
also show that the stationary distribution of our system process
converges to that of the limiting Brownian network. This
provides an approximation of the stationary distribution of
our system under heavy traffic, the scenario of most practical
interest.

IV. DIFFUSION SCALING AND HEAVY TRAFFIC LIMIT

Now we consider a new sequence of scaled systems, /=.
The =-th process is the above system but with arrival rate
vector _= and standard deviation f=. As = → ∞, _= → _∗,
and,

lim
=→∞

=〈k, _= − _∗〉 = 1∗ ∈ R, (19)

where _∗ is a point on the boundary of Λ, and k denotes the
outer normal vector to Λ at the point _∗. This is heavy traffic
scaling. The arrival rate increases towards the maximum rate
that the system can support. The ‘speed’at which this happens
is controlled by (19). This is a technical necessity to ensure
that the scaled queue length process converges in the limit to
a well defined Brownian motion. Heavy traffic implies that the
system is facing resource constraints, and hence, it is of great
practical interest as well. We will also assume that _∗ falls
in the relative interior (the relative interior of a set Ω is its
interior within the affine hull of Ω [33]) of one of the faces
of the boundary of Λ (this is the resource pooling condition).
Define the diffusion scaling,

Î= (C) = /= (b=2Cc)
=

.

Let Î= denote the process ( Î= (C), C ≥ 0). As before, we have,
Î= = (0̂=, 4̂=, 6̂=, 3̂=, Â=, B̂=, @̂=).

Define the system workload ,= (C) in the direction k,

,= (C) = 〈k,&= (C)〉, and F̂= (C) = , (b=
2Cc)
=

. (20)

Denote F̂= = {F̂= (C), C ≥ 0}. Define an invariant point to
be a vector q that satisfies, for some : > 0, U(q)q = :k,

where U(q) is the vector of all U(q 9 ), with U defined in (5).
Assume that f= → f, as = → ∞, and the arrival process
�= (C) satisfies, for all 8, 5 ,

lim
G→∞

sup
=≥1
E[(� 5 ,=

8
(1))21{� 5 ,=

8
(1) ≥G }] = 0. (21)

This is a sufficient condition for Donsker’s Theorem to hold
for the arrival process [23]. Under these assumptions, we have
the following result, which characterizes the weak convergence
of the diffusion scaled processes.

Theorem IV.1. Consider {Î=, = ∈ N}, under heavy traffic
scaling satisfying (19),and N a sequence of positive integers =
increasing to infinity. Assume that the arrival process satisfies
(21). Further, assume that, @̂= (0) ℒ→ 2q, where 2 is a
non negative real number. Then, the sequence {F̂=, = ∈ N}
converges weakly to a reflected Brownian motion F̂ as =→∞
in �[0,∞). Further, {@̂=, = ∈ N} converges weakly to qF̂.

The proof of this Theorem proceeds in the following man-
ner. The process F̂= is decomposed into two parts. The first of
these parts converges to a Brownian motion. The second con-
verges to the unique regulator corresponding to the Brownian
motion. Together, they add up and form a reflected Brownian
motion. Define Wℎ = {s : ∃< ∈ Mℎ B.C.

∑
5 s

5

8 9
≤

<8 9 , ∀8, 9}. For a vector s, define the transformation Z by,

Z
5

8
(s) =

∑
9

s
5

8 9
−

∑
:

s
5

:8
. (22)

Applied to a rate vector, this shows the net outflow by routing.
Define the set Z (Wℎ) = {Z (s) : s ∈ Mℎ}. Let us denote
the maximum allocation in the direction k, when the channel
is in state ℎ, by dℎ = maxo∈Z (Wℎ) 〈k, o〉, for all ℎ ∈ H .
Define the vectors, d = [dℎ]ℎ∈H , d̂ = [(dℎ)2]ℎ∈H , and the
random variables, -` (C) = d� (C) , C ≥ 1. The random variables
{-` (C), C ≥ 0} are i.i.d, with mean and variance given by,
â = 〈d, W〉, f̂2 = E[(-` (1) − â)2] = 〈d̂, W〉 − â2 ≥ 0.

Define -̆ (C) = ∑C
:=1 -` (:). This is the cumulative maxi-

mum possible service along k. Write,

* (C) = , (0) + 〈k, �̆(C)〉 − -̆ (C), (23)

+ (C) = -̆ (C) + 〈k, '̆(C)〉 − 〈k, �̆ (C)〉, (24)

and, consequently, , (C) = * (C) + + (C). Hence, ,= (=2C) =
*= (=2C) + += (=2C). Define, D̂= (C) =

*= ( b=2C c)
=

,Ê= (C) =
+ = ( b=2C c)

=
. Thus we have, F̂= (C) = D̂= (C) + Ê= (C). Let us

denote F̂= = {F̂= (C), C ≥ 0}, D̂= = {D̂= (C), C ≥ 0} and
Ê= = {Ê= (C), C ≥ 0}. Now we look at convergence of D̂=.

Lemma IV.2. Assume the initial condition F̂= (0) converges
weakly to an invariant point, F̂(0), as =→∞ along N , where
U(F̂(0))F̂(0) = k. Then, it follows that, D̂=

ℒ→ D̂, in �[0,∞)
as = → ∞ along N , where D̂ = (D̂(C), C ≥ 0) is a Brownian
motion with drift, given by, D̂(C) = F̂(0) + 1∗C +fℬ(C), where
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ℬ(C) is a standard Brownian motion, f2 =
∑
8, 5 (f

5

8
)2 + f̂2,

and 1∗ is given by (19).

Proof. Note that D̂= = *= (=2C)
=

= F̂= (0) + 〈k, 0̂= (C)〉 − Ĝ= (C),
and hence,

D̂= (C) = F̂= (0) + 〈k, 0̂= (C) − _==C〉 − (Ĝ= (C) − â=C)
+(〈k, _=〉 − â)=C.

Since â = 〈d, W〉, we can see that,

â =
∑
ℎ∈H

Wℎdℎ =
∑
ℎ∈H

Wℎ max
o∈Z (Mℎ)

〈k, o〉 (25)

= max
õ∈∑ℎ WℎZ (Mℎ)

〈k, õ〉 = 〈k, _∗〉, (26)

where the last equality holds since _∗ is at the boundary of the
capacity region and õ ∈ ∑

ℎ WℎZ (Mℎ) represents service rate
in the system,whose inner product with k is maximized when
it is _∗. From (19), (〈k, _=〉 − â)=C → 1∗C. The convergence
of (〈k, 0̂= (C) − _==C〉, C ≥ 0) and (Ĝ= (C) − â=C, C ≥ 0) to
independent Brownian motions follows by Donsker’s theorem
[23].

This establishes the weak convergence of the processes
{D̂= (C), C ≥ 0}. Using Skorohod representation [34] , one can
construct a probability space where we have �[0,∞) valued
processes D̂=

(
and D̂( , such that, almost surely, D̂=

(
→ D̂( D.>.2.,

where D̂=
(

and D̂( are identical in distribution to D̂= and D̂. Thus
D̂( is the Brownian motion given in (IV.2). We augment this
probability space to include the other components of / as
well. On this probability space, we will have the functions
Ê= and F̂= as before. In this augmented probability space,
we will prove the convergence of Ê=. In particular, we will
show that the limit of the processes {E= (C), C ≥ 0} has a limit
which satisfies certain conditions necessary for it to be the
unique regulator corresponding to the Brownian motion D̂.
The relationship between a one dimensional Brownian motion
and its regulator is given by the following result [35].

Lemma IV.3 (One dimensional Skorohod Problem). Let b ∈
�[0,∞), such that b is continuous, and b (0) ≥ 0. Then there
exists a unique pair of non-negative functions b1, b2, both in
�[0,∞) with b2 (C) non decreasing and continuous, b2 (0) = 0
such that b1 (C) = b (C) + b2 (C) for all C ≥ 0. For any C ≥ 0, if
b1 (C) > 0, then it is not a point of increase of b2 (C). This pair is
given by, b2 (C) = sup0≤g≤C (−b (g))+, b1 (C) = b (C) + b2 (C), C ≥
0.

If the process b (C) is a sample path of a Brownian motion,
b2 (C) is called its regulator, and b1 (C) is called the reflected
(regulated) Brownian motion. It is clear that the proof of
convergence of the processes {F̂=, C ≥ 0} to the reflected
Brownian motion corresponding to the Brownian motion
{D̂(C), C ≥ 0} would involve showing the limit of the processes
{Ê=, C ≥ 0} as b2 satisfies properties required by Lemma IV.3.
This is done in the following theorem (see appendix D).

Theorem IV.4. For any subsequence N1 of N as given in
Theorem IV.1, there is a further subsequence N2 along which
the processes {Ê=, C ≥ 0} has a limit Ê = {Ê, ≥ 0}, such that,
1) Ê(C) is continuous, 2) Ê(C) is finite for C ∈ [0,∞), 3) Ê(0) =

0, and,
4) if F̂(C) > 0, then C is not a point of increase of Ê.

Now we outline the proof of Theorem IV.1.

Proof of Theorem IV.1. From Lemma IV.2, using Skorohod
representation, one can construct a probability space where we
have �[0,∞) valued processes D̂=

(
and D̂( , such that, almost

surely, D̂=
(
→ D̂( D.>.2., where D̂=

(
and D̂( are identical in

distribution to D̂= and D̂. Thus D̂( is the Brownian motion
given in (IV.2). We augment this probability space to include
the other components of / as well. On this probability space,
we will have Ê= and F̂= as before.

Using Theorem IV.4 with IV.3, we can see that Ê is the
unique regulator corresponding to D̂. Consequently, the process
F̂ converges to a reflected Brownian motion.

The weak convergence of {@̂=, = ∈ N} to qF̂ will follow if
@̂= converges to qF̂ u.o.c.. From (60), it follows that for any
C ≥ 0 and n > 0, there exists X > 0 B.C.,

lim sup
=→∞

sup
g∈[C−X,C+X ]+

| |@̂= (g) − qF̂= (g) | | < n. (27)

Let C ⊂ R+ be a compact set. Let n be fixed. Then, for
every C ∈ C, there exists a XC such that (27) holds. Consider
all sets of the form (C − X

2 , C +
X
2 ). These form an open

cover for C. Since the set is compact, there exists a finite
subcover [36]. Therefore, there exists some finite number
 such that, we have numbers C1, . . . , C all from C, such
that, C ⊂ ∪ 

8=1

(
C8 −

XC8
2 , C8 +

XC8
2

)
. This with (27) yields the

result.

Now we demonstrate that the stationary distributions of the
scaled systems converge to the stationary distribution of the
Brownian motion.

V. CONVERGENCE OF STATIONARY DISTRIBUTIONS

We have the following result.

Theorem V.1. As = → ∞, @̂= (∞) ℒ→ qF̂(∞), where the
time argument being infinity denotes the respective stationary
distributions.

To prove this, we define a new set of fluid
limit processes, Ī=,A (C) =

/= ( bAC c)
A

. Let Ī=,A =

(0̄=,A , 4̄=,A , 6̄=,A , 3̄=,A , Ā=,A , B̄=,A , @̄=,A ), denote the process
( Ī=,A (C), C ≥ 0), and Ī= the fluid limit process obtained,
for each =, by taking the limit A → ∞. For each /=, let
c= denote the stationary distribution of the corresponding
network. These exist because for each =, the system &= is
stable. The draining time for the =-th fluid system is denoted
by g=

3A08=
. From Lemma III.3, we see that g=

3A08=
is inversely

proportional to the distance from the boundary of the capacity
region Λ. It is also easy to see that, due to (19), the distance
to the boundary of the capacity region, which is the plane
whose normal vector is k, decreases as 1

=
. Hence,

g=3A08= ≤ =)1, (28)

for some finite )1, assuming that the initial fluid level is unity.
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Now, we state a sufficient condition for the sequence
{c=, = ≥ 0} to be tight. Note that by writing @̂=G (·) we indicate
that the initial condition of the queue is G.

Lemma V.2. Assume that, for all nodes 8, 9 , flows 5 , for any
= ≥ 1, C ≥ 0, we have, for some � < ∞,

E[ sup
0≤:≤C

| �̆ 5 ,=
8
(:) − 0̄ 5 ,=

8
(:) |2] ≤ �C, (29)

E[ sup
0≤:≤C

|'̆ 5 ,=
8
(:) − Ā 5 ,=

8
(:) |2] ≤ �C, (30)

E[ sup
0≤:≤C

|�̆ 5 ,=

8
(:) − 3̄ 5 ,=

8
(:) |2] ≤ �C. (31)

Further, assume that there exists ) such that for all C ≥ ) , we
have,

lim
| |G | |→∞

sup
=

1
| |G | |2

E|@̂=G (C | |G | |) |2 = 0. (32)

Then the sequence of distributions {c=} is tight.

The result is an adaptation of the techniques in [30] to our
case. We give an outline below.

Proof. From (32), it follows that there exists " , 0 < " < ∞,
such that, with D = {G : | |G | | < "}, for all G ∉ D,

sup
=

E| |@̂=G () | |G | |) |2 ≤
||G | |2

2
. (33)

Define X = )" and g= (X) = inf{C ≥ X : | |@̂=G (C) | | ≤
"}. Define a sequence of stopping times, T0 = 0, T< =

T<−1 + ) max( | |@̂=G (T<−1) | |, "). Define, <∗= = min{< ≥ 1 :
| |@̂=G (T<) | | ≤ "}. and, +̂= (G) = E[

∫ g= (X)
0 (1 + ||@̂=G (C) | |)3C]. It

follows that,

+̂= (G) ≤ E[
∫ T<∗=

0
(1 + ||@̂=G (C) | |)3C] (34)

=

∞∑
:=0
E[

∫ T:+1

T:
(1 + ||@̂=G (C) | |)3C1{:<<∗= }] . (35)

Define the filtration ℱC as the sigma algebra generated by
{@̂=G (B) < 0 ≤ B ≤ C}. It can be shown (see Appendix F) that
there exists a finite non negative constant 20 such that, for all
=, :, G,

E[
∫ T:+1

T:
(1 + ||@̂=G (C) | |)3C |ℱT: ]1{:<<∗= } (36)

≤ 20 (1 + ||@̂=G (T: ) | |2)1{:<<∗= } . (37)

Using this, one obtains the estimate,

sup
=

+̂= (G) ≤ 20 sup
=

E[
<∗=−1∑
:=0
(1 + ||@̂=G (T: ) | |2)] . (38)

Observe that the Markov chain {@̂=G (T<), < ≥ 1} has the single
step transition kernel %= (G, �) = %̂) max( | |G | |," )

= (G, �), where
%̂C= was the transition kernel of @̂=. Using (32) and (33), we
have, for some � ∈ (0,∞),

BD?=

∫
G

%= (G, 3H) | |H | |2 ≤ ||G | |2 −
||G | |2

2
+ �1[1," ] ( | |G | |).

(39)

Using this in Lemma E.1, and using (38), we see that, for all
G, sup=

∫ g= (X)
0 (1+ ||@̂=G (C) | |)3C ≤ 2(1+ ||G | |2). It can be shown

[30] that there exists a positive ^ < ∞ such that, for all C, G,
=,

E[+̂= (@̂=G (C))]
C

+
∫ C

0 E(1 + ||@̂
=
G (B) | |)3B

C
≤ +̂= (G)

C
+ ^. (40)

Define the functions,

+ := (G) = min(+̂= (G), :), Γ:= (G) =
1
C
(+ := (G) − E[+ := (@̂=G (C))]),

Γ= (G) =
1
C
(+̂= (G) − E[+̂= (@̂=G (C))]).

Now, Γ:= (G) → Γ= (G) as : → ∞, by the monotone conver-
gence theorem. Also, since c= is the invariant measure of the
=-th system, we have,

∫
G
Γ:= (G)c= (3G) = 0. By Fatou’s Lemma,∫

G

Γ= (G)c= (3G) ≤ lim inf
:→∞

∫
G

Γ:= (G)c= (3G) = 0. (41)

If +̂= (G) ≤ : , from (40), we know that, Γ:= (G) ≥ −^. If +̂= (G) >
: , we have, Γ:= (G) ≥ 0. Hence, Γ:= (G) ≥ −^ for all G. From

(40), we can see that, Γ= (G) ≥
∫ C

0 E(1+| |@̂
=
G (B) | |)3B
C

− ^. Thus we
obtain the bound,∫

G

Γ= (G)c= (3G) ≥
∫ C

0

∫
G
E(1 + ||@̂=G (B) | |)c= (3G)3B

C
− ^.

Combining with (41), and noting that the systems are assumed
to be stationary, we obtain,

∫
G
E(1 + ||@̂=G (C) | |)c= (3G) ≤ ^.

Since c= is the invariant measure for the =-th system, this is
equivalent to, ∫

G

(1 + ||G | |)c= (3G) ≤ ^. (42)

Let n be fixed. Let M = {G : | |G | | ≤ "}, for some " > ^
n
− 1.

Then,
∫
G∉M
(1 + ||G | |)c= (3G) ≥ (1 + ")c= (M2). Using (42),

we have that, c= (M2) ≤ ^
1+" < n, by our choice of " . Since

this is true for all =, it implies that the sequence of probability
measures {c=, = ≥ 1} is tight.

Lemma V.3. In our system model, conditions (29)-(31) hold.
Further, there exists ) such that (32) holds. Consequently, the
sequence {c=} is tight.

Proof. Since { �̆ 5 ,=
8
(C) − 0 5 ,=

8
(C), C ≥ 0} is a martingale, using

Doob’s inequality [37] we get,

E[ sup
0≤:≤C

| �̆ 5 ,=
8
(B)−0̄ 5 ,=

8
(B) |2] ≤ �′1E| �̆

5 ,=

8
(C) − 0̄ 5 ,=

8
(C) |2

≤ �′1CE| �̆
5 ,=

8
(1) − 0̄ 5 ,=

8
(1) |2 = �1C,

where the second inequality follows from the i.i.d nature of
the arrival process [38]. Hence, (29) holds. The bounds for
'̆ and �̆ would hold if a corresponding bound holds for the
(̆
5

8 9
processes, which depend on both the queue state at time

C, and the channel state at time C. Let C be the set of possible
values ((C) can take. Since H is finite (and consequently,
C), there are only a finite set of mappings from H to C.
This set of mappings will be denoted by {F1, . . . , F 1 }. Each
((&(C), � (C)) will take the value of one of these functions. It
is easy to see that the state space of queues can be partitioned
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as, Q = ∪<=1,..., 1Q<, where, if &(C) ∈ Q<, we have
((&(C), � (C)) = F< (� (C)), and the Q< are disjoint. Now we
can write,

(̆
5

8 9
(C) =

C∑
C
′
=1

 1∑
<=1
F< (� (C))1{& (C)=<}, (43)

where 1 is the indicator function. Rewrite this as, (̆ 5
8 9
(C) =∑ 1

<=1
∑
:∈)̂< (C) F< (� (:)), where )̂< (C) is the set of time slots

till C when the queue state was in Q<. Since the system is
stationary, we can also obtain B

5

8 9
(C) = E[(̆ 5

8 9
(C)] . Thus, we

may write, with F̄< = E[F< (� (1))],

|(̆ 5
8 9
(C) − B 5

8 9
(C) |2 ≤ �′2

 1∑
<=1
| |

∑
:∈)̂< (C)

F< (� (:)) − F̄< | |2,

where �
′

2 depends only on  1. For any <, along : ∈ )̂< (C),
F< (� (:)) is an i.i.d sequence. Therefore, proceeding similar
to what was done for �, we now obtain,

E[ sup
0≤:≤C

|(̂ 5
8 9
(:) − B 5

8 9
(:) |2] ≤ �2E[

∑
<

|)̂< (C) |] = �2C,

where the equality follows, since
∑
< |)̂< (C) | = C. Hence the

bounds hold for '̂ and �̂ as well. Hence (29)-(31) hold,
choosing � = max{�1, �2}.

To show (32), observe that, since =@̂
5 ,=

8
(C) = &

5 ,=

8
(0) +

�̆
5 ,=

8
(=2C) + '̆ 5 ,=

8
(=2C) − �̆ 5 ,=

8
(=2C). Subtract the fluid queue

@
5 ,=

8
(C′) at time C

′
= =2C and use triangle inequality to get,

|& 5 ,=

8
(=2C) − @̄ 5 ,=

8
(=2C) |2 ≤ � ( |& 5 ,=

8
(0) − @̄ 5 ,=

8
(0) |2

+| �̆ 5 ,=
8
(=2C) − 0̄ 5 ,=

8
(=2C) |2 + |'̆ 5 ,=

8
(=2C) − Ā 5 ,=

8
(=2C) |2

+|�̆ 5 ,=

8
(=2C) − 3̄ 5 ,=

8
(=2C) |2).

Choosing & 5 ,=

8
(0) = @̄ 5 ,=

8
(0), we obtain, using (29)-(31), that

E|& 5 ,=

8
(=2C) − @̄ 5 ,=

8
(=2C) |2 ≤ �2=

2C, and hence it follows for
the vector process &, with a higher constant �

′

2, E| |&= (=2C) −
@̄= (=2C) | |2 ≤ �′2=

2C. From (28), since the draining time of the
fluid system @̄= with initial condition equal to one, g=

3A08=
≤

=)1, the fluid system with initial condition G, will be zero
at any time greater than g=

3A08=
| |G | |. Setting C ≥ )1 | |G | |, and

dividing by =2, we get,

E|@̂=G (C | |G | |) |2 ≤ �
′

2C | |G | |. (44)

Since the bound is uniform over =, dividing by | |G | |2 and taking
| |G | | → ∞ gives the result.

With this result, we are ready to prove Theorem V.1.

Proof of Theorem V.1. Since the c= are tight, any subse-
quence of c= has a convergent subsequence. Let such a limit
point be c∗. On the convergent subsequence, assume that
the initial conditions /̂= (0) are distributed as c=. Since the
systems /̂= converge to a reflected Brownian motion (RBM),
the initial condition of the RBM F̂ will have distribution c∗.
Also, we have shown that finite dimensional distributions of
Î= also converge to that of F̂. In particular, Î= (C) weakly
converges to F̂(C) for any C ≥ 0. But the distribution of Î= (C)
is c=. Thus distribution of F̂(C) is c∗ for each C. Hence c∗ is
the stationary distribution of F̂.
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Fig. 3. Example Network for simulation

TABLE I
GETTING TARGETED END-TO-END MEAN DELAY FOR FLOW F2

Target
Mean
Delay
g�2

Achieved
Mean
Delay
for F2

Delay
for F1

Delay
for F3

Delay
for F4

Delay
for F5

∞ 524.9 56.1 101.8 485.2 593.8
450 438.7 76.3 147.7 799.8 998.9
400 389.7 76.9 154.5 857.8 1066.0
350 348.5 72.2 141.1 724.1 905.0
300 301.9 75.2 148.1 797.6 1001.6
250 259.3 75.3 149.9 820.1 1024.0
220 237.6 74.4 149.0 805.9 1001.0

The Brownian motion F̂ obtained as the limit of F̂= is a
unidimensional reflected Brownian motion, having drift 1∗ <
0. If F̂(∞) has the stationary distribution of F̂, from [35],

P[F̂(∞) < H] = 1 − exp(21∗H/f2). (45)

VI. NUMERICAL SIMULATIONS

For simulations, we consider a 15 node network, with
connectivity as depicted in Fig 3. In each slot, each link
samples a channel state from the set {0, 1, 2, 3} uniformly,
independent of other links. On this network we have five flows,
with the following paths F1: 2 → 1 → 8 → 7 → 12 → 15,
F2: 12 → 11 → 10 → 9 → 5 → 4, F3: 2 → 6 → 11 →
15 → 14 → 13, F4: 7 → 6 → 5 → 9 → 13 → 14 and F5:
8 → 1 → 2 → 3 → 4 → 5 → 9. For each flow, the arrival
process at the source is Poisson distributed, with mean _. The
parameters 01 and 02 in (5) are both set equal to one. The
set of activation vectors is chosen as a subset of the set of all
activation vectors that satisfy the half-duplex constraint.

First, we demonstrate how we can deliver targeted end-to-
end mean delay using the parameter &

5
of the function U in

(4). Recall that for a flow with arrival rate _ 5 , to obtain a target
end-to-end mean delay of g 5 , we need to set &

5
= _ 5 g 5 .

Thus, we set a target mean delay for flow F2. The results
are provided in Table I. Let g�1, . . , g�5 denote the target
mean delays of the five flows. We see the effect of varying
the parameter g�2 alone, while g 5 for the other flows is set
to ∞ (this is equivalent to setting U = 1). The arrival rate _ is
fixed to be 0.37. The results are displayed in Table I. The first
row displays the mean delays of five flows, with no targets
(all g 5 = ∞). Without targets, F2 has a mean delay of 524.9
slots. We use g�2 to take the mean delay below this value.
From 524.9, the mean delay can be brought down to around
half that value, 237.6, by fixing a target of 220. Indeed, the
delivered mean delay for this flow is close to the target, for
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TABLE II
GETTING TARGETED END-TO-END MEAN DELAYS FOR FLOWS F4 AND F5

Target
delay
(g�4)

Achieved
delay
for F4

Target
delay
(g�5)

Achieved
delay
for F5

400 400.1 500 495.3
370 368.1 450 449.5
350 356.9 400 408.2
370 368.1 370 389.3
320 331.0 380 390.9
300 313.0 350 364.8

TABLE III
APPROXIMATION OF QUEUES. THE MEAN QUEUE LENGTH OF THE FLOW

F2 IS COMPARED WITH THE UPPER AND LOWER BOUNDS.

Arrival
Rate _

Lower
Bound

Mean
Queue
Length

Upper
Bound

0.30 25.7 28.5 51.5
0.31 28.9 35.1 57.9
0.32 33.1 43.9 66.2
0.33 38.7 54.8 77.3
0.34 46.4 73.0 92.9
0.35 58.1 95.7 116.2
0.36 77.5 134.4 155.0
0.37 116.3 199.7 232.7
0.38 232.9 268.3 465.8

values from 520 till about 300. The delay cannot be reduced
much below 237, owing to paucity of network resources. Note
how the other flows lose out, since the resources are used
up for providing priority service to F2. Correspondingly their
delays blow up.

We can make multiple flows meet their delay targets si-
multaneously. Keeping the system parameters same as before,
we now attempt to control the mean end-to-end delays cor-
responding to flows F4 and F5, simultaneously. These results
are provided in Table II. We show the targeted mean delays
and the delays obtained for these two flows. The delays of
the other flows blow up as in the previous table. We have
not included them in this table for ease of understanding.
Observe that from the initial values of 485.2 and 593.8, we
are able to bring down the delays to as low as 313 and 364,
simultaneously. As in the previous table, the achieved mean
delay tracks the targeted values very well. The amount of
reduction we can bring to each flow is less than what we can
do if we were controlling a single flow. This is because the
algorithm is throughput optimal, and will not sacrifice stability.
Consequently, the amount of ‘tweaking’ we can do is limited
by the additional resources available to the system. These extra
resources will get divided between the two flows, instead of
one in the previous table.

Now we move on to the approximation of queue lengths by
the limiting distribution obtained from the Brownian motion.
From the diffusion approximation and (45), we can see that the
mean of the Brownian motion corresponding to the queue can
be approximated by the vector q f

2

21∗ . The Brownian motion is
a limit of the scaled process of the form & (=2C)

=
. For a large =,

we may approximately write, &(=2C) u =q f2

21∗ . If we run the
simulations for a time =, we may further also approximately

write 1∗ = =| |_ − _∗ | |. Hence, we have the approximation,

&(∞) u q f2

2| |_ − _∗ | | . (46)

Instead of approximating q, which may not be straightforward,
we observe that, k

2 ≤ q ≤ k. From this we obtain upper
and lower bounds for the queue length. We present the
approximation values near the point where the arrival rates of
all flows are equal to 0.39 (this is at the boundary of capacity).
The value of f2 is 5_ + f̂2. We can approximate f̂2 by 67.5.
In Table III, we show the lower and upper bounds obtained
from the approximation, for the flow F2. The component of k
in the direction of F2 is approximately 0.3. The bounds track
the queue length quite well, for a large range of values starting
away from the boundary of the capacity region.

VII. CONCLUSION

We have presented an algorithm for scheduling in multihop
wireless networks that guarantees end-to-end mean delays
of the packets transmitted in the network. The algorithm is
throughput optimal. Using diffusion scaling, we obtain the
Brownian approximation of the algorithm. We also prove
theoretically that the stationary distribution of the limiting
Brownian motion is the limit of the stationary distributions
of a sequence of scaled systems, and is consequently a good
approximation for the stationary distribution of the original
system. Using these relations, we obtain an approximation for
queue lengths, and demonstrate via simulations that these are
accurate.

APPENDIX A
PROOF OF THEOREM III.1

We will use the following two results, the first from [15]
and the second from [39].

Lemma A.1. Let b= : [0,∞) → R be a sequence of
monotonically increasing functions. Let b= (G) → b (G) for all
rational G. If b (G) is continuous, the convergence is u.o.c..

Lemma A.2 (Helly’s Selection Theorem). Let b= be a se-
quence of monotonically increasing functions on R, such that
0 ≤ b= (G) ≤ � < ∞, for all G and =. Then, there is a function
b and a subsequence {=: } such that b (G) = lim=:→∞ b=: (G).

The Strong Law of Large Numbers (SLLN) in conjunction
with Lemma A.1 gives (12). The family { 1

=
(̆
5

8 9
(=C)} consists

of monotone increasing functions, bounded by `<0GC. Using
Helly’s selection theorem (Lemma A.2), one can obtain a
convergent subsequence with limit B. Along this subsequence,
A= → A and 3= → 3 satisfying (13), due to (2).

Since the rates are bounded (owing to bounded channel
gains and fixed power), it follows that (̆ 5

8 9
(C) ≤ `<0GC. There-

fore, for 0 ≤ C1 ≤ C2, we have
(̆
5

8 9
(=C2)
=
−
(̆
5

8 9
(=C1)
=
≤ `<0G (C2−C1).

Along the subsequence along which B= → B, we have,
B
5

8 9
(C2) − B 58 9 (C1) ≤ `<0G (C2− C1). It follows that B 5

8 9
is Lipschitz

continuous, and hence so is B, and consequently A and 3 are
Lipschitz as well. Hence, from Lemma A.1, we obtain u.o.c.
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convergence for B=, A= and 3= along the chosen subsequence.
Since B is Lipschitz and hence differentiable 0.4., (17) follows.

From (11), we can see that, &(=C) = &(0) + �̆(=C) + '̆(=C) −
�̆ (=C). Dividing by = on both sides and taking =→∞ along
the subsequence yields @= → @, with @(C) satisfying (14).
Since 0, A and 3 are Lipschitz, @ will also be Lipschitz, making
it differentiable 0.4. . At points where it is differentiable, we
obtain (15) by differentiating (14).

The functions { 1
=
�̆ℎ�` (=C)} are also a monotone family,

bounded uniformly on each compact interval. Hence, we can
apply Helly’s selection theorem to obtain a subsequence along
which 6= → 6. Since 1

=
(�̆ℎ�ˆ̀ (=C2) − �̆

ℎ�
ˆ̀ (=C1)) ≤ C2 − C1, for

C2 > C1, 6 is Lipschitz; along this new subsequence 6= → 6

u.o.c.
To show (18), observe that, (̆

5

8 9
(C) =∑

ℎ, e , ˆ̀ �̆
ℎ�
ˆ̀ (C) ˆ̀ 5

8 9
(ℎ, e). Hence, we have, (̆ 5

8 9
(=C2)− (̆ 58 9 (=C1) =∑

ℎ, e , ˆ̀ (�̆ℎeˆ̀ (=C2) − �̆
ℎe

8 9 5
(=C1)) ˆ̀ 5

8 9
(ℎ, e). Multiplying LHS

and RHS by U(&
5 (=C1)
=
)
&
5

8 9
(=C1)
=

1
=

, summing over i, j, f, and
taking =→∞, the LHS becomes∑

8, 9 , 5

U(@ 5 (C1))@ 58 9 (C1) [B
5

8 9
(C2) − B 58 9 (C1)], (47)

where @
5

8 9
(C) = max(@ 5

8
(C) − @

5

9
(C), 0) and

@ 5 (C1) = lim=→∞
& 5 (=C1)

=
=

∑
8 @

5

8
(C). The RHS

becomes,
∑
8, 9 , 5 U(&

5 (=C1)
=
)
&
5

8 9
(=C1)
=

∑
ℎ, e , ˆ̀ (

�̆
ℎe

ˆ̀ (=C2)
=

−
�̆
ℎe

ˆ̀ (=C1)
=
) ˆ̀ 5
8 9
(ℎ, e). The allocation satisfies, at every C where

channel state is ℎ, ∑
8, 9 , 5

U(&
5 (=C)
=
)
&
5

8 9
(=C)
=

ˆ̀ 5
8 9

(48)

= max
ˆ̀ ∈U(ℎ)

∑
8, 9 , 5

U(&
5 (=C)
=
)
&
5

8 9
(=C)
=

ˆ̀ 5
8 9
. (49)

Going along the subsequence along which @= → @, we obtain,∑
8, 9 , 5

U(@ 5 (C))@ 5
8 9
(C) ˆ̀ 5

8 9
(ℎ, e) = max

ˆ̀ ∈U(ℎ)

∑
8, 9 , 5

U(@ 5 (C))@ 5
8 9

ˆ̀ 5
8 9
.

(50)

Along the same subsequence, using (50), (16) and (12), this
becomes

(C2 − C1)
∑
ℎ

Wℎ max
ˆ̀ ∈U(ℎ)

∑
8̂, 9̂ , 5̂

U(@ 5̂ (C1))@ 5̂
8̂ 9̂
(C1) ˆ̀ 5̂

8̂ 9̂
. (51)

Dividing (47) and the above by C2 − C1, equating, and taking
C2 → C1, ∑

8, 9 , 5

U(@ 5 (C1))@ 58 9 (C1) ¤B
5

8 9
(C1) (52)

=
∑
ℎ

Wℎ max
ˆ̀ ∈U(ℎ)

∑
8̂, 9̂ , 5̂

U(@ 5̂ (C1))@ 5̂
8̂ 9̂
(C1) ˆ̀ 5̂

8̂ 9̂
(ℎ, e). (53)

Since W is the convex hull of all points of the form∑
ℎ Wℎ ˆ̀(ℎ) where ˆ̀(ℎ) ∈ U(ℎ), we obtain (18). The first

part of (16) follows by applying the fluid scaling to (10).
Since | |&(0) | | = = for the =-th system, the second part of
(16) follows.

APPENDIX B
PROOF OF THEOREM III.2

We will be using the following result.

Theorem B.1. (Theorem 4 of [16]) Let . be a Markov Process
with norm | |. (.) | |. If there exist U > 0 and a time ) > 0 such
that for a scaled sequence of processes {.=, = = 0, 1, 2, ..}, we
have lim=→∞ supE[| |. (=, )) | |] ≤ 1− U, then the process . is
stable (positive recurrent).

Pick an arrival rate _ = {_ 5
8
} ∈ 8=C (Λ). Consider the

Lyapunov function,

L1 (@(C)) = −
∫ ∞

C

exp(C − g)
∑
8, 5

U(@ 5 (g))@ 5
8
(g) ¤@ 5

8
(g)3g,

(54)

where the dot indicates the derivative. This is a continuous
function of @(C), with ! (0) = 0. Taking the derivaative of
(14), we have, ¤L1 (@(C)) =

∑
8, 5 U(@ 5 )@

5

8
(_ 5
8
+ ∑

< ¤B
5

<8
(C) −∑

= ¤B
5

8=
(C)). Since _ is in the interior of Λ, there exists a

non negative vector [s 5

8 9
](8, 9) ∈E, 5 ∈F B.C. _ 58 + n <

∑
9 s

5

8 9
−∑

: s
5

:8
∀8, 5 , and there exists < ∈ M such that

∑
5 s

5

8 9
≤

<8 9 . Hence,

¤L1 (@(C)) < −n
∑
8, 5

U(@ 5 )@ 5
8
+

∑
8, 5

U(@ 5 )@ 5
8
(
∑
=

s
5

8=

−
∑
<

s
5

<8
+

∑
<

¤B 5
<8
(C) −

∑
=

¤B 5
8=
(C)).

Observing that
∑
8, 5 U(@ 5 )@

5

8
(∑=s

5

8=
− ∑

<s
5

<8
) =∑

8, 9 , 5 U(@ 5 )s
5

8 9
(@ 5
8
− @ 5

9
), and that a similar equation holds

for s replaced by ¤B, it follows that if we show∑
8, 9 , 5

U(@ 5 )s 5

8 9
(@ 5
8
− @ 5

9
) ≤

∑
8, 9 , 5

U(@ 5 ) ¤B 5
8 9
(@ 5
8
− @ 5

9
), (55)

it will imply ¤L1 (@(C)) < 0. We have
∑
8, 9 , 5 U(@ 5 )s

5

8 9
(@ 5
8
−

@
5

9
) ≤ ∑

8, 9 , 5 U(@ 5 )s
5

8 9
@
5

8 9

≤ ∑
8, 9 , 5 U(@ 5 ) ¤B

5

8 9
@
5

8 9
, where the first inequality follows

from the fact that @ 5
8 9
= (@ 5

8
− @ 5

9
)+, and the second from

(18).
Now, if we show that ¤B 5

8 9
= 0 whenever @ 5

8 9
= 0, (55) will

follow. To see this, assume that at some C, ¤B 5
8 9
= X1 > 0 and

@
5

8 9
= 0. This would mean that for large enough =, there

is a time B sufficiently close to C such that, for X = X1

2 ,
(
5

8 9
(=C) − ( 5

8 9
(=B) > =X(C − B). This implies that at a time

C1 ∈ (B, C) with &
5

8
(=C1) − & 5

9
(=C1) ≤ 0 the queue & 5

8
was

served. This means that the optimization resulted in a positive
`
5

8 9
. This cannot happen when all & 5

8 9
are zero, since in that

state, by definition, all ` 5
8 9

are set to zero. Hence there exists
:, ;, < such that &<

:;
> 0. If ` 5

8 9
is added to `<

:;
, the value of

the summand in (4) would only increase, thus contradicting
its optimality. It follows that ¤B 5

8 9
= 0 whenever @ 5

8 9
= 0, and

hence, (55) is true.
Thus, ¤L1 (@(C)) < −n ∑

8, 5 U(@ 5 )@
5

8
, and hence,

L1 (@(C)) > 0 whenever @(C) ≠ 0. Fix X1 < 1. There
exists ) ≤ )1 =

L1 (@ (0))
n X1

+ X1 such that
∑
8, 5 @

5

8
≤ X1. To see
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this, assume otherwise, that
∑
8, 5 @

5

8
(C) > X1 for C ∈ [0, )1].

Now,

L1 (@(C)) = L1 (@(0)) +
∫ C

0
¤L1 (@(g))3g.

Since @ is Lipschitz, ¤@ will be bounded. It is easy to see
that L(@(0)) is finite. Since F(@ 5 ) ≥ 1, L1 (@(C)) ≤
L1 (@(0)) − nX1C, for C ∈ [0, )1], and by choosing C = )1,
we obtain L1 (@()1)) < 0, which is a contradiction. Hence,∑
8, 5 @

5

8
()) ≤ X1. Since the fluid queue follows the trajectory

defined by equations (12)-(18), it follows that, almost surely,
lim=→∞ sup | |&= ()) | | = ∑

8, 9 , 5 @()) ≤ X1 < 1. From the
definition of &, we have that | |&= ()) | | ≤ [1+∑8, 5 �̆

5 ,=

8
()) +

)
∑
8, 9 , 5 `<0G] . Since E[∑8, 5 �̆

5 ,=

8
())] = ) (∑8, 5 _

5

8
) < ∞,

we can use the Dominated Convergence Theorem [37] to see
that Theorem B.1 holds for & with U = 1 − X1. The result
follows.

APPENDIX C
PROOF OF LEMMA III.3

For any positive X, as =→∞ along N1,

@(C) = lim
=→∞

&(bX=Cc)
X=

=
1
X
@(XC). (56)

Hence, a fluid limit path @(C) is equivalent to a fluid path
@ (XC)
X

. Define a fluid path @
′ (C) = @(C + )) for C ≥ 0. This

is a fluid path with initial condition, |@′ (0) | ≤ X1. From (56),
@
′ (C) = @(C+)) = 1

X−1
1
@(X−1

1 (C+))). If )1 is the time for the path

@
′ (C) to reach the level (X1)2, |@(X−1

1 ()1 +))) | = X1. However,
|@(C) | reaches X1 in time ) . Hence |@(X−1

1 C) | reaches X1 in
time C = X1) . Hence, )1 ≤ X1) . Thus we bound the time to
reach X1, (X2)2, and so on by )1, )2, etc., where )= ≤ (X1)=).
Hence, the time for the queue to reach zero is bounded by,
) + X1) + (X1)2) + · · · = )

1−X1
.

APPENDIX D
PROPERTIES OF Ê

We will show that, along the subsequence N2, we have a
limit Ê of Ê=, for which the properties 1-4 of Theorem IV.4
hold. To study diffusion properties on an interval [C=, C= + X]
for X > 0, we look at fluid paths on the time [=C=, =C=+=X]. We
consider the following family of fluid paths, started at a time )
apart from each other. For a time evolving process 5 (C), define
the operator Θ(g) as the shift, corresponding to the process
started at time g. Consider the fluid scaled process I=. Consider
a shifted form of these processes, Ĩ<,; = Θ(<C<+);)I<, where
Θ(G) 5 denotes the function 5 started at G. Define the family
of processes, Z = {Ĩ<,; (<) , < ∈ N3}, where the index set N3
has the property that as < →∞ along N3, C< → C.

If C< → C, and ; (<) ∈ [0, 2X</) − 1], a time B ∈ [0, )]
for the path Ĩ(<, ; (<)), for < large enough, corresponds to a
time, B

′
= C< + ; (<))/< + B/< ∈ [C −3X, C +3X]+. We have the

following results regarding the behaviour of the fluid sample
paths. Here we follow [26].

Lemma D.1. Consider the family Z with an associated
sequence C<, constants ) and X, both positive. Assume that

| |@̃<,; (<) | | ∈ [21, 22], with 0 ≤ 21 ≤ 22 < ∞, and
; (<) ∈ [0, 2X</) − 1] ∩ Z. Then, there is a subsequence <:
along which, Ĩ<,; (<) → I, u.o.c, with | |@(0) | | ∈ [21, 22].

The Lyapunov function L1 (@(C)) defined in the proof of
Lemma III.2. This function is non negative, finite and its time
derivative is negative. If, along @(C), if limC→∞ L1 (@(C)) = 0,
define L3 = L1. Else, if limC→∞ L1 (@(C)) = L∗ > 0, define
L3 (@(C)) = L1 (@ (C))

L∗ − 1. Clearly, L3 (@(C)) decreases to zero
along any fluid path. We have the following result, with V a
universal constant.

Lemma D.2. Under our scheduling policy, assume that there
is a subsequence such that, along this, Ê= → Ê. Suppose
further that along this subsequence, we have B< → B ≥
0, F̂< (B<) →  > 0, lim sup<→∞ | |@̂< (B<) | | <  1 , for some
fixed  1 > 1. Let X > 0 be chosen such that, n = $D̂ ( [B−3X, B+
3X]+) < 0.5 , where $D̂ [0, 1] = supG,H∈[0,1] |D(G)−D(H) |. Let
 2 = V

2 1 +2n . Then, for any n2 > 0 sufficiently small, there
exists a time ) such that, for < sufficiently large, we have,

 − 2n < F̃<,0 (D) <  2, for D ∈ [0, )], (57)

( − 2n)/V < | |@̃<,0 (D) | | < 2V 2. (58)

For ; ∈ [1, 2XA)−1 − 1] ∩ Z, we have,

L3 (@̃<.; (0)) < 2n2,L3 (@̃<.; ())) < 2n2,L3 (@̃<.; (D)) < 3n2,
(59)

for D ∈ [0, )], (60)

Ẽ<,; (D) = Ẽ<,; (D) − Ẽ<,; (0) = 0, for D ∈ [0, )],
(61)

 − 2n < F̃<,; (D) <  2, for D ∈ [0, )], (62)

( − 2n)/V < | |@̃<,; (D) | | < 2V 2. (63)

Proof of Lemma D.2. Since L3 is decreasing to zero,
there exists ) such that, L3 (C) ≤ n2, ∀C ≥ ).

Consider the case ; = 0. Observe that, for <

large, we have lim sup<→∞ supD∈[0,) ] | |@̃<,0 (D) | | <

V lim sup<→∞ | |@̃<,0 (D) | |. This is true because, if it were not,
using Lemma D.1, we could have a sequence of Ĩ<,0 which
converge to a fluid limit I with | |@(D) | | ≥ V |@(0) | for some D.
However, this is not possible since supC≥0 | |@(C) | | < V | |@(0) | |.
This implies that,

lim sup
<→∞

sup
D∈[0,) ]

| |@̃<,0 (D) | | < V lim sup
<→∞

| |@̃<,0 (D) | | < V 1 ,

and lim sup<→∞ supD∈[0,) ] F̃<,0 (D) < V2 1 . By the non
decreasing property of F, lim inf<→∞ infD∈[0,) ] F̃<,0 (D) ≥  .
Choosing ) large enough, we can have L3 (@̃<,0 ())) < 2n2.
Since @̃<,0 ()) = @̃<,1 (0), it also follows that, L3 (@̃<,1 (0)) <
2n2. Consider the following properties, for ; ∈ [1, 2X</) −1].

L3 (@̃<.; (0)) < 2n2, L3 (@̃<.; ())) < 2n2, L3 (@̃<.; (D)) < 3n2,
(64)

for D ∈ [0, )], (65)

Ẽ<,; (D) = Ẽ<,; (D) − Ẽ<,; (0) = 0, for D ∈ [0, )],
(66)

 − 2n < F̃<,; (D) <  2, for D ∈ [0, )], (67)

( − 2n)/V < | |@̃<,; (D) | | < 2V 2. (68)
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We will show these hold, by induction on ;. Assume the
properties hold for all ; < ;1, but at least one of the above
properties is violated for ; = ;1. Since the properties hold up to
; = ;1−1, we have that L3 (@̃<,;1 (0)) = L3 (@̃<,;1−1 ())) < 2n2.
Since F is non decreasing, we have, F̃<,;1 (0) >  −2n . From
the relation between | |@ | | and F it follows that, | |@̃<,;1 (0) | | ∈[
 −2n
V
, 2V 1

]
. Thus, for a choice of ) appropriately large,

we will have,

L3 (@̃<.;1 (0)) < 2n2,L3 (@̃<.;1 ())) < 2n2, (69)

L3 (@̃<.;1 (D)) < 3n2, for D ∈ [0, )] . (70)

To show the non-increasing property of Ẽ as in (66), ob-
serve that the queue length and workload are strictly pos-
itive as shown above. Since we had E<,; (C) = G<,; (C) −
〈k, 3<,; (C) − A<,; (C)〉, and since our optimization is such
that we choose the allocation vector `∗ such that, `∗ =

arg` max
∑
8, 9 , 5 U(@

5

8
)@ 5
8 9
`
5

8 9
, = arg` max

∑
8, 9 , 5 U(@

5

8
) (@ 5

8
−

@
5

9
)` 5
8 9
. The second equation holds because the allocation

vector ¤B 5
8 9
(C) is zero when @

5

8
− @ 5

9
≤ 0. This optimiza-

tion may be rewritten as a function of new variables ˜̀,
where ˜̀ 5

8
=

∑
9 `

5

8 9
− ∑

: `
5

:8
. We have ˜̀∗ given by ˜̀∗ =

arg ˜̀ max
∑
8, 9 , 5 U(@

5

8
)@ 5
8

˜̀ 5
8
. Since (70) holds, it will be that

(choosing n2 small enough), this is exactly the result of the
optimization, ˜̀∗ = arg ˜̀ max

∑
8, 9 , 5 k

5

8
˜̀ 5
8
, since the function

L3 indicates how close we are to the collapse vector k. From
the definition of - , it follows that the scaled G̃ attains the value
given above, and hence Ẽ does not increase in the interval.

Since Ẽ remains at zero, we can see that any increase in F̃
is an increase in D̃, and hence, F̃<,;1 (D) = F̃<,0 ()) + D̃< (C< +
;1)/< + D/<) − D̃< (C< + )/<). Since the oscillation of D̂ is
bounded and since D̃< → D̂, the bounds (in (68) also follow
for ;1. Hence, we have inductively shown that the properties
(60)-(63) hold.

To obtain the properties of Ê, we will require the following
result, which is easy to obtain.

Lemma D.3. Let I= = (0=, 4=, 6=, 3=, A=, B=, @=) be the fluid
scaled process, with components 0= = (0 5 ,=

8
)8, 5 and 4= =

(4=
ℎ
)ℎ∈H . Let N1 be an arbitrary subsequence of N . Then,

there exists a further subsequence N2 of N1, such that almost
surely, as =→∞ along N2, the fluid scaled process satisfies,
for any ) > 0, for all 8, 9 , 5 , 2 ∈ H ,

max
0≤ℓ≤=)

sup
0≤n ≤1

|0 5 ,=
8
(ℓ + n) − 0 5 ,=

8
(ℓ) − _ 5

8
n | → 0,

max
0≤ℓ≤=)

sup
0≤n ≤1

|4=2 (ℓ + n) − 4=2 (ℓ) − W2n | → 0.

First we show that Ê(C) is finite for all C ∈ [0,∞). Suppose
this is not true. Then we will have C0 = inf{C ≥ 0 : Ê(C) =
∞}. Fix X > 0, and n = $D̂ [C − 4X, C + 4X]+. Choose Δ ∈
(0,min(C, X)) and � > F̂(C − Δ) + 2n . Define the sequence,
C= = min{B ≥ C − Δ : F̂(B) ≥ �}. Since Ê is RCLL, and since
Ê(C) = ∞, it follows that, lim sup= C= ≤ C. Also, lim sup= F̂= (C−
Δ) < �. Now, in a small interval, the process F̂ will not have
jumps, since,

F̂= (C) − F̂= (C−) ≤ 〈k, 0̂= (C) − 0̂= (C−)〉 + 〈k, Â= (C) − Â= (C−)〉,
(71)

and because the process ' is bounded by the i.i.d channel
process �. Using Lemma D.3, the above quantity goes to zero.
Hence it will follow that, as = → ∞, F̂= (C=) → �. Choose a
further subsequence along which, C= → C

′ ∈ [C − Δ, C] . Along
this, applying Lemma D.2, we see that Ê is finite on the interval
[0, C′ + X]. Thus we have a contradiction, and hence Ê is finite.
Note that a similar construction can be done for C = 0 as
well. The proof for continuity can also be done similarly, by
finding point C which is a point of discontinuity. Choosing a
suitable time before C, one can construct a sequence as before,
which converges to a value �. Again, we will use Lemma
D.2 to claim a contradiction. A similar proof holds for other
properties of Ê as well.

APPENDIX E
COMPARISON THEOREM FROM [40]

Lemma E.1. For a Markov chain {-: , : ≥ 1} with transition
kernel %. Suppose there exist non negative functions Φ1 (G),
Φ2 (G) and Φ3 (G) that satisfy, for all G,

∫
G
%(G, 3H)Φ1 (H) ≤

Φ1 (G) − Φ2 (G) + Φ3 (G), then, for any stopping time T ,
EG [

∑T−1
:=0 Φ2 (-: )] ≤ Φ1 (G) + EG [

∑T−1
:=0 Φ3 (-: )] .

APPENDIX F
PROOF OF (36)

Due to the strong Markov property, it suffices to show that,

E

∫ T1

0
(1 + ||@̂=G (B) | |3B) ≤ 20 (1 + ||G | |2). (72)

Observe that, &= (=2C) = G + @= (=2C) + �= (=2C) − 0= (=2C) +
'= (=2C) − A= (=2C) −�= (=2C) + 3= (=2C), where, @= (C) = 0= (C) +
A= (C) − 3= (C), is the fluid limit corresponding to the =-th
system. Thus, one obtains the inequality,

E[ sup
0≤C≤T

| |&= (=2C) | |] ≤| |G | | + E[ sup
0≤C≤T

| |@= (=2C) | |] (73)

+E[ sup
0≤C≤T

| |�= (=2C) − 0= (=2C) | |] (74)

+ E[ sup
0≤C≤T

| |'= (=2C) − A= (=2C) | |]

(75)

+ E[ sup
0≤C≤T

| |�= (=2C) − 3= (=2C) | |] .

(76)

Since sup0≤C≤T @
= (=2C) ≤ supC @= (C), and the queue is non

zero only till the draining time (given by (28)), and since
the total input rate to a queue is bounded by the sum of
all mean arrival rates and mean channel gains, it follows
that there exists a constant 2 independent of C and =, such
that, supC | |@= (C) | | ≤ | |G | | + =)1, where )1 is from (28).
For the process � (and similarly for ' and �), we can
see that, E[sup0≤C≤T | |�= (=2C) − 0= (=2C) | |] is bounded by√
E[sup0≤C≤T | |�= (=2C) − 0= (=2C) | |2], using Jensen’s inequal-

ity. Combining these bounds, we see that, for some constant
21 E[sup0≤C≤T @̂

=
G (C)] ≤ 21 (1 + ||G | | + T ). By definition,

T1 ≤ 22 (1 + ||G | |). Using these facts in (73), we obtain (72).
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